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EFFICIENT SOLUTION OF MAXWELL'S EQUATIONS USING THE
NONUNIFORM ORTHOGONAL FINITE DIFFERENCE TIME DOMAIN
METHOD

John Allan Svigelj, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1995
Raj Mittra, Advisor

The Finite Difference Time Domain (FDTD) method is limited by memory
requirements and computation time when applied to large problems, complicated
geometries, or geometries with fine features. In this thesis, the nonuniform orthogonal
FDTD method is presented and 'applied to a variety of electromagnetic problems. The
nonuniform aspect of the method gives great flexibility in modeling complicated
geometries with fine features. Furthermore, the variability of the mesh resolution also
enables the user to move the boundaries of the computational domain farther away from
the center of the problem without an undue increase in the number of cells. Most
significantly, the orthogonality of the method preserves the speed of the conventional
FDTD method. These three features of the nonuniform orthogonal FDTD method are
demonstrated by means of numerical examples throughout the thesis.

Grid dispersion error from the nonuniform mesh is analyzed and numerical
examples are presented, demonstrating that small growth rates in mesh discretization lead
to acceptably small errors. The issue of absorbing boundary conditions is addressed with
the analysis and application of the dispersive boundary condition on nonuniform meshes.
New techniques are also introduced for the efficient characterization of microstrip lines,
microstrip discontinuities, and coupled microstrip structures using FDTD data. A local
mesh refinement technique is introduced for planar perfect electric conductor, and is
shown to be three times more accurate than the staircasing approximation.

The versatility of the method is demonstrated by the analysis of a balun-fed folded
dipole antenna, the characterization of the transition of grounded coplanar waveguide to

microstrip line, and the study of fields in lossy layered media.
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CHAPTER 1
INTRODUCTION

1.1 Overview

The Finite Difference Time Domain (FDTD) method was introduced to the
electromagnetics community in 1966 [1.1]. The FDTD method solves Maxwell's
equations in partial differential equation form. It is extremely versatile in that it is able to
analyze geometrical structures with arbitrary inhomogeneities. This is an attractive
aspect of the method when compared with integral equation methods, which require
geometry-dependent Green's functions; these can be computationally expensive and
difficult to derive for arbitrary inhomogeneities. Although approximations often exist, it
frequently remains difficult to obtain robust representations of the Green's functions for
the general case [1.2]. Moreover, the FDTD method does not reduire matrix operations,
unlike the Finite Element Method and the Method of Moments. Depending upon the
problem, the matrix operations present potential pitfalls for those methods because of
ill-conditioned matrices, non-convergent solutions, or simply the computational expense
of N by N matrix operations. Additionally, the FDTD method is inherently efficient
since it is of order N [1.3].

The FDTD method is explicit and solves differential equations by stepping
forward in time. Because it is a time domain method, solutions to transient excitations
provide a wide band of results in the frequency domain. This is particularly useful when
analyzing frequency-dependent structures, since the frequency-dependent results can be
obtained from a single FDTD simulation. Furthermore, the FDTD method is an excellent
tool for providing a means for field visualization as a function of time and space. This
can be important when studying complex three-dimensional geometries, where analysis
of time signatures of fields, voltages, or currents can lead to physical understanding. For

example, questions of how a structure responds to various excitations, where sources of




scattering are located, or how discontinuities affect field propagation, can be answered by
simply observing electric fields, magnetic fields, voltages, and/or currents, as functions of
time and space.

There are several limitations to the FDTD method and these limitations are often
related to the accurate description of the geometry being analyzed. When a structure has
a fine feature that has to be accurately described, a fine discretization must be used in the
computational domain. Complicated geometries are also difficult to model because all
defining dimensions must be an integral multiple of the cell discretization in a given
direction. This can lead to an exorbitant number of unknowns, which will result in an
intractable problem because of either the amount of memory, or the amount of time,
required to perform the numerical simulation. The same type of limitations arise when
attempting to solve large problems. Here, large refers to problems on the order of 18
million unknowns, or problems with dimensions on the order of 7 A by 7 A by 7 A where
the cell discretization is on the order of A/20 and the platform used to run the FDTD code
has 128 MB of RAM. With unlimited computer resources, any size problem can be
solved. How long the simulation will take to run, however, is another issue.

The problem of modeling large problems or geometries with fine features has
been addressed by several researchers who have reported expansion techniques [1.4],
sub-cell gridding [1.5], and sub-cell modeling [1.6]. Of these methods, sub-cell modeling
is the most accurate and can be incorporated into the FDTD update equations without loss
of speed and does not require temporal interpolation. Another approach for solving large
problems is to implement the FDTD algorithm on a parallel architecture [1.7]. This
approach does permit the solutioﬁ of large problems, but can be expensive in terms of
simulation times because of the need to communicate large amounts of data at every time
step.

The other geometrical feature that presents difficulties for the FDTD method is

curves or angles other than 90°.  The usual method for modeling these types of features is



to use a staircase approximation to the geometry. Local mesh refinement techniques have
also been reported [1.8] and [1.9]. An alternative approach is to use the curvilinear
FDTD method [1.10]. This method does a good job at accurately modeling geometries
~ that have features that can be modeled with continuous non-orthogonal coordinate lines.
Special conditions and update equations are required when irregular grids are
encountered. The accuracy and enhanced modeling capability of the curvilinear method
certainly does not come without a price. The curvilinear method requires at least twice as
much memory as the conventional FDTD method to store covariant and contravariant
field components, and the curvilinear method is slower because there are more operations
in the update equations and conversions are required. In many instances, both the
memory requirements and computational time required for the curvilinear method render
the method prohibitively expensive. This situation should be remedied to an extent in the
future by faster computer processors and the availability of machines with large amounts
of memory.

The primary goals of this thesis are to present the nonuniform orthogonal FDTD
method, and to demonstrate its applicability to a variety of electromagnetic problems.
The nonuniform aspect of the method gives great flexibility in modeling geometries.
Furthermore, the variability of the mesh resolution also enables the user to move the
boundaries of the computational domain farther away from the center of the problem
without an undue increase in the number of cells. Most significantly, the orthogonality of
the method preserves the speed of the conventional FDTD method. These three features
of the nonuniform orthogonal FDTD method are demonstrated by means of numerical
examples throughout the thesis.

Long simulation run times can also be an undesirable characteristic of the FDTD
method. The issue of temporal truncation and extrapolation, which must be applied with
great care, is not addressed in this thesis. However, numerical techniques which enable

the extraction of frequency-dependent information from a minimum number of FDTD




simulations are presented. Moreover, these same techniques can be applied to extract the
reflections from imperfect absorbing boundary conditions.

Since the simulation time is directly proportional to the size of the computational
domain, it is advantageous to keep the computational domain small. This involves one of
the most important issues in electromagnetic modeling using the finite difference time
domain method, Which is the truncation of the computational domain with absorbing
boundary conditions (ABCs). An underlying theme common to research concerning
ABGCs is that it is desirable to use an ABC which is not only accurate in the modeling of
waves at the boundaries, but also can be brought close to the radiating source or
discontinuity, thereby saving on the memory and computation requirements. Depending
upon the problem being solved, the absorbing boundary should simulate the outward
propagation of traveling waves at various angles of incidence, guided modes, or
evanescent modes. Clearly, it is advantageous to have a robust absorbing boundary
condition that can be used for different types of problems, i.e., guided wave or radiating
wave. The modified dispersive absorbing boundary condition is such an ABC [1.11], and

it is analyzed and implemented on a nonuniform grid in this thesis.

1.2 Outline of the Thesis

The nonuniform orthogonal FDTD method is applied to a wide variety of
. electromagnetic problems. Whenever possible, the FDTD results are compared with
analytic expressions, experimentally measured results, or the results of other numerical
methods, including results from circuit simulators. In certain instances, due to the
uniqueness of the problem analyzed, comparisons are not possible.

Chapter 2 introduces the nonuniform orthogonal FDTD mefhod after briefly
describing the conventional FDTD method. The nonuniform algorithm is developed
based upon the general curvilinear FDTD method. Following the derivation of the

nonuniform orthogonal update equations, the error due to the nonuniform grid is
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discussed. A theoretical analysis is followed by a numerical example. Finally, problems
involving the finline waveguide and lossy layered media are analyzed using the

nonuniform orthogonal FDTD method.

Chapter 3 presents the implementation of the dispersive boundary condition
(DBC) on a nonuniform orthogonal grid. Motivation for the study of the DBC is
provided with an analysis of the Mur ABCs. The DBC and modified DBC equations are
derived, followed by a discussion on stability. The DBC for nonuniform grids is tested
with a microstrip line problem and a general radiating problem. Error analysis is carried
out in the time domain, the frequency domain, and spatially.

Chapter 4 presents a variety of methods for calculating the frequency-dependent
characteristics of microstrip lines, striplines, and discontinuities. Use of a Prony
technique with the FDTD method is presented and applied to two-port scattering
parameter calculations. A local mesh refinement technique is introduced for triangular
metallization and demonstrated to increase the accuracy of the FDTD method. The
FDTD method and Prony technique are combined to analyze the complicated transition
from a grounded coplanar waveguide to a microstrip line.

Chapter 5 uses the FDTD method to characterize coupled microstrip lines and
coupled striplines. First, the symmetric problem is considered and an even and odd mode
theory is used in addition to the methods of Chapter 4 to characterize the lines. The
methods of Chapter 4 are extended to handle the asymmetric case. This new method is
presented, followed by numerical examples analyzing coupled symmetric and asymmetric
lines. A multidielectric asymmetric coupled stripline problem is also analyzed.

Chapter 6 uses the FDTD method to analyze microstrip antennas. The near-field
to far-field transformation is discussed, followed by the analysis of a complicated balun
fed folded dipole antenna. The benefits of using the nonuniform orthogonal FDTD
method are demonstrated through the analysis of microstrip patch antennas. The results

obtained are compared with experimental measurements.




Finally, Chapter 7 summarizes the results of this thesis and suggests topics for

further study.
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CHAPTER 2

THE NONUNIFORM ORTHOGONAL FINITE DIFFERENCE TIME DOMAIN
METHOD

2.1 Introduction

In this chapter the Nonuniform Orthogonal Finite Difference Time Domain
method is presented. After first considering the conventional uniform FDTD method, the
nonuniform algorithm is developed based upon the general curvilinear FDTD method.
The development entails the discussion of basis vectors, metrics, and field locations.
Following the derivation of the nonuniform orthogonal update equations, the error due to
the nonuniform grid is discussed. A theoretical analysis is followed by a numerical
example. Finally, examples of electromagnetics problems that are well-suited to the
nonuniform method are presented. Specifically, problems involving the finline

waveguide and lossy layered media are analyzed.

2.2 Uniform Finite Difference Time Domain Method

The Finite Difference Time Domain (FDTD) method was introduced to the
electromagnetics community by Yee in 1966 [2.1]. Because of its versatility and the
advances ih computer capability, it has enjoyed widespread use in recent years. The
FDTD method discretizes Maxwell’s equations in both space and time using second-
order accurate central difference formulas. Arbitrary geometries are described on a
uniform rectangular mesh, and the electric and magnetic fields are determined at discrete
locations within the mesh as functions of time. The electric field values are located on
the edges of the rectangular FDTD cells, and the magnetic field values are located at the
centers of the faces of the cells. The dimensions of each cell are Ax by Ay by Az, and the

time step is At. The time step is related to the mesh discretization through the Courant



stability criterion shown in (2.1), where c is the velocity of light in the medium. The
method becomes unstable when (2.1) is violated, but for optimal performance, At should

be chosen as large as possible [2.2].

At < ! @.1)

c 1+1+1
AxZAyZAZZ

The electric field at time nAt is updated in terms of the electric field at the same location

at time (n-1)At and the surrounding magnetic fields at time (n-1/2)At. The update

equations for the x-components of the electric and magnetic fields are given in (2.2) and

E!Ni,jk)= ((1 - %) / (1 + Z—A;D EX'(i, j,k)
(&) ) (Eresmzmre)

_( Hz""/z(i,j,k)—Hz""/z(i,j+l,k)D 22)

(2.3).

Ay

HP(i, k)= H (i, j, k) + (—25)

([ ES(igk=1)=EJ(i.j.k) ) ( Er(inj—1,k)= Er(i, j.k) 2.3)
Az Ay

where F"(i, j,k) = F(iAx, jAy,kAz;nAt), © is the electrical conductivity, p is the

permeability, and € is the permittivity. Update equations for the other field components

are obtained by permuting the fields and indices.




2.3 Nonuniform Orthogonal Finite Difference Time Domain Method

In this section, the update equations for nonuniform orthogonal FDTD will be
derived from curvilinear FDTD update equations. Before deriving the update equations,
the basis vectors, metrics, covariant fields, contravariant fields, and physical fields will be
discussed. The presentation here will follow that of Holland [2.3]. Any general
coordinate system can be characterized by unitary basis vectors, (61,&’2,&3). In general,
these vectors need not be orthogonal to each other and are not of unit length. However,
for the purposes of this work, the vectors will be orthogonal to each other. Typical basis
vectors used in this work, shown in Fig. 2.1, are parallel to the edges of the cell.
Reciprocal basis vectors can also be used to characterize the coordinate system and can
be defined in terms of the basis vectors as follows:

a'=a;xa,[\g (24)

where JE is equal to the volume of the rectangular prism formed by the basis vectors
(&'1,21'2,21’3). These orthogonal vectors satisfy the following properties:

-a=8 @2.5)

i i

u3 A (51’ 52’63 ) IPoim 2
P /
// e

@, 4,a3) IPoiml

Figure 2.1 Basis vectors shown at two points on a typical FDTD cell. Point 1 is located
at the center of an edge along the u' coordinate line, and Point 2 is located
at the center of a face normal to the #' coordinate line.
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(2.6)

a,
2.7)

a-a’'=6,

4, =08,

i

where g is the inverse of g’ and 0, is the Kronecker delta function.

A general vector can be written in terms of its covariant components, as in (2.8),

or in terms of its contravariant components, as in (2.9).

3
E=Yed (2.8)
i=1
- 3 s
E=Y ¢4, 29)
i=1
The ¢, and €' are related by the following formulas:
e; = g,e’d, (2.10)
¢ =g'ed, 2.11)

The ¢, and €' are not physical fields. The physical fields are related to the ¢; and

¢' as follows:
E,=+g" 2.12)
E'=.gé (2.13)
and the physical fields are related by the following expressions
E =G,E’ (2.14)
E =G’7Ej (2.15)

where
i
| G, = ":—g,.j (2.16)
G'= /%gij 2.17)

However, from the above definitions for g; and g’, (2.14) and (2.15) simplify to

E =FE'
Using the above definitions, the first component of Faraday’s law in point form

can be written as



= T (2.18)

—uﬂz\/_é’_T a(Ea/*/gT) a(Ez/\/EEZ')
8 3

where the 4 are the coordinate lines of the curvilinear system and the permeability is not
a function of time. Similarly, the first component of Ampere’s law in point form can be

written as

E—+0E = |21 -
ot g ou’ ou

oE' g a(Ha/‘/gﬁ) a(Hz/‘/g?)

(2.19)

A leapfrog scheme is usually used to solve (2.18) and (2.19). First, (2.18) is solved for
the H', which are then converted to H,. Then, (2.19) is solved for the E'. The E' are
converted to E; and used to solve (2.18), and the process is repeated. For the orthogonal
case, it has been shown that E, = E'. Consequently, the conversions are not necessary.
Moreover, it will be demonstrated that the discretized versions of (2.18) and (2.19) reduce
to simple forms requiring the same number of operations as (2.2) and (2.3).

Using central differences, (2.18) is written as

H (A" = B L
H,

| (Ez(i,j,k)"/J?— Ey(i,j.k=1) [/g”]

U, (i,j,k)=U,(i,j.k 1)

E,

 Ey(i,j = LK)’ /" - Ey(i,j,k)" /g | (2.20)

U, (i,j-k) = U, (i»j ~1,k)

,

where u and .[g,,/g are evaluated at the H, mesh points and the +/g" are evaluated at
the E, mesh points, as the notation indicates. The U, s are the successive points of the

curvilinear coordinates and, by definition, their difference is unity.
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Since the nonuniform orthogonal system considered in this work is Cartesian, the
coordinate lines (u’,uz,u3) correspond directly to the x-, y-, and z-directions. Figure 2.2
shows that the E, and H, (E, and H,) components are located at positions marked with
unfilled and filled triangles, respectively. The y- and z-component positions are marked
with circles and squares, respectively. Cell nodes are located at cell vertices and labeled
with U, , and cell face centers are labeled with U,. The following definitions are made to
assist in the simplification process. Let dxn(i) be the distance between two nodes located
atiand i-1. Similarly, let dyn(j) be the distance between two nodes at j and j-1, and
dzn(k) be the distance between nodes at k and k-1. Define dxc(i) as the distance
between the cell centers UZ(i+1,/,k) and U(i,j,k) as shown in Fig. 2.2. Note that
dxc(i) is also equal to the distance between cell centers UZ(i+1,,k) and U(i, j.k). Let
dyc(j) and dzc(k) be defined similarly.

X U,G,j=Lk)  E(i,jk) U.G, j,k)
TZ: ;
Z
Y U'G,j k)k
ot U2 G, j k)
O N = N\ E, (i, k)
U, jik—-1)
. 2
Ui, j.k)
N ] N O U,(i-1,j,k)
A E(i-1,jk)
Q U.Gi-1,j,k-1)

Figure 2.2 Typical FDTD cell showing locations of the electric and magnetic fields.
Electric fields are located along cell edges and magnetic fields are located at
cell face centers, labeled U,. The cell nodes are labeled U, .

12
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Using these definitions, the various factors in (2.20) can be evaluated and

simplified.
glllH,(i,j,k) = dxc(i)- dxc(i) (2.21)
Vel 1 = dxei)- dyn(j)-den(k) 2.22)
, 22 = ’ 22 - R
8 i~ V8 IEz(i,j,k—l) 1/dyn(j) (2.23)

=1/dzn(k) (2.24)

Es (i, j-1k)

Substituting (2.21) through (2.24) into (2.20) and simplifying result in the following

&

E3(ij.k)

equation.
H] (i,j,k)n+l/2 = Hl (i,j,k)n_]/2 + ﬂ
7}
(Bl k) Bk =1)" | Ey(ioj ~ L) ~ Ey(injok) 2.25)
dzn(k) dyn(j)

Equation (2.25) is identical in form to (2.3).
Turning now to (2.19), central differencing leads to (2.26).
E'(i,j,k)"

E'(i,j.k)™" = ((1 3 %)/ (1 ' %D 3
+ gn/g((%)/(”gz%t))E

. [(Hz(s,f,kf“”/@ = Hy (i ok + 1) [g® }

U(i,j,k+1) = U2(i, j.k)

H,

(2.26)

{ i+ L) g™ ~ B (i k)™ g™ J

Ui, j+1,k)=U(i,j,k)

H,




Again, note that the denominators of the partials with respect to the curvilinear

coordinates are unity by definition. The metric factors are evaluated in the following

equations.
8utlg, o = dni)- dxni) @27)
Vg L-,(i, 1 = (i) - dyc(j)- dzc(k) (2.28)
e, =VE®| L =Ydye()) (2.29)
g Iﬂs(f,f.k) - \/g_ﬁlﬂs(i,mk) = V/dze(k) (2.30)

Substituting Equations (2.27) through (2.30) into (2.26) results in

E'(i,j.k)"" = ((1 - 52481) / (1 + %%’DEI (i,j,k)"
(g

Hy(i,j+ L) = H,(i, j, k)"
+ : (2.31)
dyc(j)

which is identical in form to Equation (2.2).

It is important to note that since the nonuniform orthgonal update equations are
identical in form to the uniform update equations, there is no loss of speed when updating
the fields. Care must be taken when computing the coefficients in the nonuniform update
equations since variable cell discretization must be taken into account in order to
accurately weight the coefficients when dealing with interfaces between different media
[2.4]. However, the advantages from memory savings and decrease in total run time due
to a smaller number of unknowns far outweigh this slight disadvantage. For many classes
of problems, this difficulty can be avoided entirely by requiring that cell discretizations

normal to a material interface be equal, in which case, the algorithm can be implemented

with the same efficiency as the uniform method.
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2.4 Error from Grid Dispersion on Nonuniform Grids

It is clear that the ability to allow the FDTD mesh to vary will result in a reduction
in the number of unknowns. The mesh can be dense in areas where fine features must be
accurately modeled and then allowed to expand or grow to a relatively "coarse" mesh in
areas where fine discretization is not necessary. However, one cannot simply allow the
mesh to grow at an arbitrary rate. The mesh must be varied gradually; otherwise, phase
error due to grid dispersion will contaminate the solution at an unacceptable level. An
excellent discussion of grid dispersion error can be found in [2.5]. The development in
[2.5] will be followed here, simplified to the one-dimensional case and perturbed to
include the nonuniformity of the grid.

Consider the scalar wave equation for homogenous media given in (2.32).

1 9 2
0—25;2-4’(2, t)=V?¢(z,2) (2.32)

Since any wave can be expressed as a sum of plane waves, solutions of (2.32) are
comprised of plane waves.

o(z,t) = A(t)e ™ (2.33)
The discretized form of the plane wave in (2.33) is given in (2.34).

@, = e’ etk (2.34)

Discretizing (2.32) using central differencing results in (2.35).

2
o, = (—A’%) S (Bh =20}, + &), )+ 20, — B (2.35)

Substituting (2.34) into (2.35) results in the one-dimensional numerical dispersion

sin( wAs ) = (CA’ )sin( kZAZ) (2.36)
2 Az 2

Now, consider a cell whose discretization, Az,, is larger than Az. Solving (2.36)

relation given in (2.36).

for the numerical propagation constant yields

15



=2 | A kAz)
,B—Atsm |:Azz sm( 5 :I (2.37)

where f=w/c and k, =k, Equation (2.37) is an exact solution to the numerical

dispersion relation (2.36). An approximate solution to (2.36) can be obtained by writing

sin(%l) =rs (2.38)

cAt . (k,Az . . . . . -
where r=z and s=sm(—2g). Using series expansions for sinx and sin™ x and
retaining second-order terms yield the approximate solution to the numerical dispersion

relation

kAz)  (cAtiR:
B= ko[l— ( 242) + ( 221 ] (2.39)
where f=w/c and k, =k,.

Supposc that Az, is the minimum cell discretization and that Af is chosen such
that At = Az /c. Clearly, there is no phase error due to grid dispersion if Az, = Az, in
(2.37) and (2.39). When Az, # Az, then (2.37) and (2.39) can be used to determine the
normalized phase error for a given cell as a function of the ratio Az,/Az,. For example,
let Az, = 10 mm and allow Az, to vary. At a frequency of 1.5 GHz, Az; = A/20. Since
the largest practical value of Az, is A/10, the ratio Az,/Az can range from 1 to 2. The
percent error in normalized phase is plotted in Fig. 2.3, }where M1 refers to (2.37) and M2
refers to (2.39) and the frequency values, f, are given in gigahertz. The agreement
between methods M1 and M2 verifies the approximations made in deriving (2.39). For
f = 1.5 GHz, there is a 1.2% error in the normalized phase at a ratio of 2. For
f = 0.75 GHz, the ratio goes up to 4 where the error is about 1.55%. This error is per cell,
so the error will accumulate as the field propagates from cell to cell. It is evident that the
smaller the cell size in terms of wavelength, the larger the acceptable growth ratio
between cells. For example, there is less than 0.2% error at f = 1.5 GHz for a ratio of 1.2

and less than 0.2% error at f = 0.75 GHz for a ratio of 1.6.
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Figure 2.3 Percent error in normalized phase per cell for two frequencies and two
methods. M1 refers to (2.37) and M2 refers to (2.39).

In practical applications, At is usually chosen less than the value specified by the
Courant stability criterion, (2.1). To show how this affects the error due to the

nonuniform grid, consider Az, = 10 mm and f = 1.5 GHz. Rewriting (2.39) leads to

B= k{1 - 2::00 [(-’i—ﬁ) -1 J] (2.40)
1

where B=w/c, k,=k,, and cAt=mnAz,. Figure 2.4 shows that varying the time step

increases the percent error in the normalized phase by not more than 0.1 % when 7 is at
least 0.9.

To test the effect of the nonuniformity of the grid on a practical numerical
example, a stripline embedded in free space was analyzed. Since the stripline structure
supports a TEM mode, the grid dispersion error can be determined by varying the grid in
the direction of propagation and calculating the relative dielectric constant. In this case,
the relative dielectric constant should be one. The geometry of the stripline is shown in

Fig. 2.5(a), where the separation between the ground planes, H, is 6.0 mm, and the width,
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Figure 2.4 Percent error in normalized phase per cell for f = 1.5 GHz and 1= cAt/ Az,
where Az, = 1/20.

W, of the centered stripline is 4.0 mm. The cross-section of the stripline is discretized
uniformly with Ax = Ay = 500 pm. The line runs in the z-direction, and an example of
15 cells of uniform cell discretization is shown in Fig. 2.5(b), and a nonuniform
discretization with growth rate 1.2 is shown in Fig. 2.5(c). Note that in Fig. 2.5(c) the
mesh begins expanding with the 12th cell and stops at the 15th cell. The first eleven cells
are uniformly discretized. The smallest cell in the z-direction is Az, = 500 um and the
largest cell is Az, = 1.0 mm.

The effective dielectric constant is calculated by monitoring the current at two
locations along the line, 15 cells apart. Depending on the cell discretization, the distance,
L, between the two points will vary. The time domain signatures of the currents at the
two positions are transformed into the.frequency domain and the effective dielectric

constant is then given by (2.41)

_[e ) (_H@ T
€ o (0)) = [(E) ln(mJ} (241)

where I is a function of frequency.
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Figure 2.5 Geometry of stripline used to test numerical grid dispersion. (a) Cross-
section of stripline, W = 4.0 mm, H = 6.0 mm. (b) Uniform cell
discretization in the direction of propagation. (c) Nonuniform cell
discretization in the direction of propagation with growth rate 1.2, cells
growing near the "d+L" location.

Six different growth rates were tested and the value of the effective dielectric
constant is shown in Fig. 2.6, where the curves are labeled on the graph according to the
growth rate of the mesh. Note that the unifdrm case (growth rate = 1.0) results in a
maximum error of 0.75 % at 30 GHz. The nonuniform cells were positioned within the
15-cell region such that the largest cell was the 15th cell. This explains the fact that a
growth rate of 1.1 gives rise to more total error than larger growth rates for frequencies
up to about 23 GHz. When the growth rate is 1.1, it takes seven cells to go from Az, to
Az,, whereas using larger growth rates, a much smaller number of cells is used in the
transition from Az, to Az,. When the mesh grows from the first monitoring location, the

total error exhibits the expected behavior as a function of frequency and the growth rate,
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as shown in Fig. 2.7. Error accumulates as the field propagates from "d" to "d+L" and the
larger cells contribute more error per cell. For a growth rate of 1.2, the accumulated error

is about 1.32 % at 30 GHz.
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Figure 2.6 Effective dielectric constant as a function of frequency for the air-filled
stripline of Fig. 2.5. The growth rate varies as indicated in the legend, and
the mesh grows near the second monitoring point, "d+L."
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Figure 2.7 Effective dielectric constant as a function of frequency for the air-filled
stripline of Fig. 2.5. The growth rate varies as indicated in the legend, and
the mesh grows near the first monitoring point, "d."

2.5 Finline Waveguide

The finline waveguide became popular in the late 1970s with the increased
interest in millimeter-wave integrated circuits [2.6]. The finline structure is shown in
Fig. 2.8. It can be viewed as a shielded slotline, a ridged waveguide with dielectric, or a
slab loaded waveguide with fins [2.7]. For millimeter-wave applications, the finline is
preferred over the microstrip line because the finline does not require stringent
manufacturing tolerances, is less susceptible to the propagation of higher-order modes,
and interfaces well with waveguide instrumentation [2.6]. Several frequency domain
techniques have been succesfully applied to characterize the finline waveguide and
related structures [2.7]-[2.11]. This type of problem is particularly well-suited to
nonuniform orthogonal FDTD because of the thin dielectric slab which has to be modeled
accurately. The mesh can grow as it moves away from the gap and toward the shield

walls.‘

21



dielectric

\

Figure 2.8 Geometry of the unilateral finline waveguide (with dielectric) and the
symmetrical ridged waveguide (without dielectric).

In this section, the cutoff frequency of a symmetrical ridged waveguide with a
varying aperture is calculated. The geometry being investigated is shown in Fig. 2.8,
where the dielectric has a dielectric constant of one. The entire cross-section is excited
with an impulse source, and the time signature of E is monitored at several locations.
These time signatures are then Fourier transformed to the frequency domain, and a spike
occurs at the cutoff frequency. The aperture width, w, was varied and is shown as a
fraction of b, the length of the top wall of the waveguide, as shown in Fig. 2.8.
Normalized cutoff frequencies calculated with the FDTD method are compared with
results using the regular solution of the singular integral equation (RSSIE) method [2.11].
As shown in Fig. 2.9, the agreement between the two methods is very good.

After monitoring fields in the time domain and transforming to the frequency
domain, the field distribution is readily available over a wide frequency band. Figure
2.10 shows the normalized distribution of E| in the aperture of a unilateral finline
waveguide with dielectric constant 2.22 at a frequency of 30 GHi for two different

aperture widths. Again, the entire cross-section is excited with an impulse and the time
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signatures are monitored in the aperture and then transformed to the frequency domain.
These results compare well with aperture distributions calculated using the spectral

domain method.
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Figure 2.9 Normalized cutoff frequency of symmetrical ridged waveguide computed
using FDTD and RSSIE.
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Figure 2.10 Distribution of normalized Ey in aperture of unilateral finline waveguide for
two different aperture widths.




2.6 Lossy Layered Media

An application that is ideal for nonuniform FDTD is the analysis of fields in a
lossy medium. The lossy medium considered in this section is seawater, which is
assumed to have a constant conductivity of 4 S/m and €, = 72. In sediment layer #1,
0, =2 S/m and in sediment layer #2, ¢, =1 S/m. The geometry, shown in Fig. 2.11,is a
10 m long dipole oriented along the x-axis and excited with a Gaussian pulse that has a
3 dB cutoff frequency of 10 kHz. The dipole is centered in a volume that is 200 m by
100 m by 100 m. The problem is discretized with a mesh that has Ax =2 m, Ay = 1 m,
and Az =1 m near the dipole. The mesh discretization then expands away from the
source, and is truncated with pec boundaries. The time step for FDTD simulations is
determined by the Courant stability criterion as shown in (2.1). For this problem, the
frequencies of interest are extremely low; thus, the time step would be restrictively small.

Therefore, a different approach is taken for describing the medium and choosing the time

step.
Dipole Exciting X
- Seawater Layered Media
Sediment #1 y z
1 Sediment #2
200 m
S0m Dipole (10 m)
Observation Points

15m

3m
32m

Figure 2.11 Geometry used for the analysis of fields in lossy layered media. The line of
observation points is 14 m below the dipole source. The dipole source is
centered in the computational volume.
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Since c=1/ m , the time step, At, will increase if €, increases. The
inequality @e << o must also be satisfied because seawater is a good conductor. Since
the frequencies of interest are very low, €, can be increased to a value on the order of
1.0-10° without affecting the low frequency results [2.12]. This results in a much larger
time step. The value of &, is chosen to be 4.0-10° and At is chosen to be 2.2 us. Electric
and magnetic fields are monitored along a line parallel to the x-axis 14 m below the
dipole source. The simulation is run for 6000 iterations, with field values recorded every
ten iterations. The time signatures are converted to the frequency domain via the discrete
Fourier transform (DFT).

When the entire background medium is seawater, an analytic expression for the
fields exists. Nonunifofm FDTD results are compared to analytic expressions in

Figs. 2.12 - 2.14. The agreement is excellent.
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Figure 2.12 Magnitude of E, in seawater observed 14 m below the source at f = 1 Hz.
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Figure 2.13 Magnitude of E, in seawater observed 14 m below the source at f = 1 Hz.
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Figure 2.14 Magnitude of B, in seawater observed 14 m below the source at f = 1 Hz.




When layers of sediment are present, as shown in Fig. 2.11, the FDTD results are
compared to those for an integral equation method provided by the U.S. Navy [2.13].
Figures 2.15 - 2.17 show the nonuniform FDTD and Navy results, and again the

agreement is excellent.
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Figure 2.15 Magnitude of E, in seawater with lossy layers observed 14 m below the
source at f = 1 Hz.
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Figure 2.16 Magnitude of E, in seawater with lossy layers observed 14 m below the
source at f = 1 Hz.
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Figure 2.17 Magnitude of By in seawater with lossy layers observed 14 m below the
source at f =1 Hz.

Figure 2.18 shows the magnitude of the residual electric field, which is the
absolute value of the difference between the fields in seawater alone and the fields with
the layers of sediment present. The agreement between the results of the two methods is
excellent.

The computational volume used for the FDTD simulations was 62 cells by 62
cells by 62 cells. When the same problem was solved using uniform FDTD, the
computational volume was 100 cells by 100 cells by 100 cells. The nonuniform FDTD
resulted in a 76% reduction of required memory. Moreover, the smaller number of
unknowns also led to a shorter computation time. To further demonstrate the utility of
the nonuniform mesh, the seawater problem was solved with a computational volume that
was 39 cells by 39 cells by 39 cells. Field magnitudes are plotted in Figs. 2.19 - 2.21.

Again the agreement is excellent. This FDTD simulation was nine times faster than the




62 by 62 by 62 case and gave a 75% memory savings. Relative to the 100 by 100 by 100

case, the 39 by 39 by 39 case represents a 94% savings in memory.
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Figure 2.18 Comparison of FDTD results with integral equation results for the residual
electric field observed 14 m below the source at f = 1 Hz.
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Figure 2.19 Magnitude of E, in seawater observed 15.9 m below the source at f = 1 Hz.
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The nonuniform FDTD method is very applicable to this type of problem because
of the ability to let the mesh discretization grow. Moreover, a single FDTD simulation
provides a wide band of frequency information, provided the geometry is excited with a
transient source. This was the case here, although results are only shown for a single
frequency. The nonuniform orthgonal FDTD approach is preferred over moment method
type solutions for this problem because of the ability to vary the geometrical and
electrical features of the problem without the derivation of a complicated Green's
function. For example, it would be a simple matter to vary the surface of the sediment in
a random fashion so as to model a rough surface, or to embed any kind of dielectric or

metal slabs horizontally, or vertically, within the layers of sediment, or in the seawater.

2.7 Conclusions

This chapter described the uniform FDTD method and introduced the nonuniform
orthogonal FDTD method. The nonuniform orthogonal FDTD method was developed
from the general curvilinear FDTD method. The grid dispersion error due to the
nonuniform mesh was analyzed, theoretically in terms of phase error per cell, and
numerically in terms of accumulated phase error from the field propagating along a
nonuniformly meshed stripline. It was demonstrated that the cell size in terms of
wavelength as well as the growth rate of the mesh are critical in determining the amount
of error, which can be maintained at acceptably low levels while still reducing memory
requirements. Several example problems were presented which demonstrated the
flexibility bof the nonuniform FDTD method as well as the attractive features of memory
savings and accurate fine feature modeling. In the case of the finline problem, small cell
discretization was used to model the fine features of the geometry. In the case of the
lossy layered media problem, the mesh grew rapidly from the regions of interest, which
enabled the boundaries of the computational domain to be positioned sufficiently far

away from the source and layers of sediment. This was accomplished with a small
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number of unknowns relative to the uniform method. The results presented were in

excellent agreement with analytic and moment method techniques.
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CHAPTER 3
THE DISPERSIVE ABSORBING BOUNDARY CONDITION APPLIED TO
NONUNIFORM ORTHOGONAL MESHES

3.1 Introduction

One of the most important issues in electromagnetic modeling using the finite
difference time domain method is the truncation of the computational domain with
absorbing boundaries. Considerable efforts have been directed to the development,
analysis, and improvement of absorbing boundary conditions (ABCs) [3.1]-[3.15]. An
underlying theme common to research concerning ABCs is that it is desirable to use an
ABC which is not only accurate in the modeling of waves at the boundaries, but also can
be brought close to the radiating source or discontinuity, thereby saving on the memory
and computation requirements. Depending upon the problem being solved, the absorbing
boundary should simulate the outward propagation of travelling waves at various angles
of incidence, guided modes, or evanescent modes. Clearly, it is advantageous to have a
robust absorbing boundary condition that can be used for different types of problems, i.e.,
guided wave or radiating wave. The modified dispersive absorbing boundary condition is
such an ABC [3.6].

The purpose of this chapter is to present the implementation of the dispersive
boundary condition (DBC) on a nonuniform orthogonal grid. Motivation for the study of
the DBC is presented with an analysis of the Mur ABCs. The DBC and modified DBC
equations are derived, followed by a discussion on stability. The DBC for uniform grids
is numerically tested with a microstrip line problem. Finally, the DBC for nonuniform
grids is tested with a microstrip line problem and a general radiating problem. Error

analysis is carried out in the time domain, the frequency domain, and spatially.
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3.2 The Mur Absorbing Boundary Conditions

It is worthwhile to examine the limitations of the first- and second-order Mur
absorbing boundary conditions [3.1]. Not only does this motivate the study of the
dispersive boundary condition (DBC), but it also provides some insight regarding the
performance of the DBC.

The well-known first-order Mur ABC is given in Equation (3.1).

(i-li)EL:o =0 3.1)

This ABC is unconditionally stable, straightforward to implement, and has minimal
memory requirements. It can be used for radiating problems as well as for guided wave
problems. The main drawback of the first-order Mur is that it only absorbs waves that are
normally incident with velocity c¢. Additionally, higher-order ABCs are usually preferred
over the first-order Mur because the reflections from the first-order Mur, which are
typically on the order of 3 to 4% of the field incident on the boundary, can seriously
degrade frequency domain results.
The second-order Mur ABC is given in Equation (3.2).

19 10 13> &
[;axa,“?a'f*a(y?ﬂ‘g'm:“ e

The second-order Mur requires tangential derivatives on the boundary. Obviously, this

leads to problems on the corners of the computational domain since there is not enough

information to perform the derivative. Thus, additional corner conditions must be

implemented. A more serious concern is the inability of the second-order Mur to absorb

guided waves, for example, waves traveling on a microstrip line. This phenomenon can

be explained by considering the dispersion relation and the Mur operator.
The dispersion relation is given in Equation (3.3)

w2

Y

2 2 2 12 _
ki +k; +k =k =

(3.3)
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where
k. = ksin(8)cos(¢) (3.4)
k, = ksin(8)sin(¢) (3.5)
k, = kcos(6) (3.6)

are the Cartesian components of the propagation vector, 8 is measured from the z-axis
and ¢ is in the x-y plane referenced from the x-axis. In order to study the simulation of
waves propagating outward in the z-direction, the dispersion relation is rewritten in terms

of k,, as follows:
k= (K> -k -k @3

Simplifying Equation (3.7) gives

k, = [1-sin?(6) (3.8)

It is the approximation of the square root in Equation (3.8) that determines the order of
the Mur operator. The radical is expanded in a series using the small argument
approximation, thus limiting the angle of incidence 6 to small values, and the number of
terms kept in the series yields the order of the Mur operator. The first-order Mur keeps
one term, leading to a simple expression for k,.

k,=k (3.9)

The second-order Mur keeps two terms and gives the following approximation for k,:
k, = k(l - %sinz(O)) (3.10)

Recall that the goal is to absorb a guided wave normally incident on a z-plane boundary.
A guided wave traveling in a dielectric medium will travel with a velocity slower than the
speed of light in free space, v, < ¢,. Since v, and k, are inversely related, a decrease in
v, means an increase in k,. Thus, k, should be greater than k. This is impossible, given
Equation (3.10), and explains the inability of the second-order Mur to absorb guided

waves. This serious limitation is not a problem for the dispersive boundary condition.
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3.3 Dispersive Boundary Condition

The dispersive boundary condition analyzed in this work is of the same form as
the absorbing boundary condition developed by Higdon, [3.3] and [3.4]. The Higdon
absorbing boundary condition was developed for radiating problems, and the parameters
of the ABC that can be varied are the speeds of the incident waves divided by the angles
of incidence, c¢/cos(6). This same boundary condition can be used for guided wave
problems if one interprets the wave speeds as normal velocities and modifies them

accordingly [3.5]. The dispersive boundary condition (DBC) is written as follows:

d 1d)fad 140
(e e L o

The DBC has the form of the product of two first-order Mur operators. The differencing
of this expression is straightforward and results in the following update equation on a
uniform grid:
E, =2E;\-E.;+ (7’1 +7, )(E:;] -Ey —E; + El'tll——-l2)
~1Y.(Ey* —2E; A\ + Eyy_y) (3.12)
where the superscripts represent the indexing in time, the subscripts represent the

indexing in space, and
Az —v,At
| = — 3.13
% Az +v,At ©.13)
When the operator (3.11) is discretized on a nonuniform grid, the order in which the
operators are applied has an effect on the resulting update equation for the boundary.

Applying the operator with the v, term first yields the update equation
EL = 2EK4——]1 - E:J_—Zz + (711 + 712)(E:4_l - E:l-—l ) + (711 aa £73 )(E:;—]2 - E;I_—zl)

“7’11712(E:4-2 -E,, ) - 711722(E1’:4—2 - E;;-ll) (3.14)

= el 3.15
Az, +v,A1 (3.15)

’}Iij
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where Az, is the discretization for the cell closest to the boundafy. Applying the operator
with v, first results in
E, =2E,\ -E’ + (7’11 + 712)(E:4_1 - E:l—-l) + (Y12 + Y )(E:;-lz - E:;-zx)
_711712(E:4_2 - E:;-ll ) - 712721(E1':4-2 - E:I——ll) (3.16)
These equations differ only in the second and fourth multipliers. Since it is not obvious
which equation should perform better, a third equation was written which averages the

second and fourth multipliers from Equations (3.14) and (3.16).
E, =2E,\-E,+ (711 + 712)(E1’:4_1 - Ei}-l) - 711712(E:4—2 - EL——ll)

+( nt¥xn ';' Yot 7 )(E;;-_l2 _ EL—_zl)

+ a2 pme
_ (711722 . Y22 )(EM 2 _ EM—ll) (3.17)

Since the multipliers are precomputed, each of these update equations requires only nine
additions and five multiplications.

Numerical examples testing the performance of these equations follow in Sections

3.7 and 3.8.

3.4 The Modified Dispersive Boundary Condition

Betz and Mittra [3.6] introduced a damping factor into one of the operators of the
DBC in order to improve the dc offset problem encountered in his research.
Additionally, the damping factor can be used in the absence of the time derivative to
absorb evanescent waves. The damping factor also stabilizes the DBC as is reported in
Section 3.5. In this section, the chief concern is the discretization of the modified

dispersive boundary condition on a nonuniform grid.

Jd 14
G 2ad e d o

Since evanescent waves are not considered in this work, only one damping term is used.
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Discretizing Equation (3.18), assuming that the operator with the damping factor

is applied first, results in the following update equation
E:l = E;"l-—ll + ﬁ(El'tll-—ll - Ezt_—22) + (711 + 712)(E174_] - EL-I)
¥ + BYu)Eila = Eul) = Yu¥u(Ew” — Exh)
~YuYn(En-2 — EiY) (3.19)
. where the superscripts represent time, the subscripts represent space, and 7y, is defined as

in Equation (3.15). Following the approach taken in [3.7], the term S is defined as

Az, + v, At

h= Az, + v, 081+ Az,

(3.20)

This definition is obtained by applying the damping term ¢ only to the term E,,. An
alternative definition for B can be found by applying central differencing in space and
time to each component of (3.18) when discretizing. Following this procedure leads to

the definition in Equation (3.21).

f= Az, +v,Af(1- 0Az)

T Az + v Ar(1+ 0Az,)

3.21)

There are three parameters that can be varied in Equation (3.18). The effects of these
parameters, as well as the definitions in Equations (3.20) and (3.21), on the performance

of the DBC will be presented in Sections 3.5 - 3.8.

3.5 Stability

It has been reported that stability problems sometimes arise when using
second-order and higher-order dispersive boundary conditions [3.7], i.e., the ABC is not
always reliable. The results of this work also confirm this. Various explanations are
given for the stability problem. One explanation states that the generation of spurious dc
signals depends on subtle factors such as the exact order of the additions in the update
equations, the spatial distribﬁtion of the incident field, and the other boundary conditions

truncating the mesh [3.8]. A rigorous approach to the stability issue has been reported
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regarding the stability of Liao's ABC [3.9]. In [3.9] it has been shown that one of the
poles of the reflection coefficient due to the ABC is on the unit circle in the complex
k-plane, rendering the ABC marginally unstable. It is demonstrated that perturbing one
of the multipliers in the differencing scheme for the Liao ABC has drastic effects on the
stability of the ABC. Since the DBC and Liao's ABC are both of the same form as the
Higdon ABC, this analysis can also be applied to the DBC. Moreover, it is stated that
perturbing the multiplier in order to stabilize the Liao ABC is equivalent to adding a
damping factor to the DBC. This will be demonstrated via a numerical example.

The mesh used to test the stability of the DBC was 40 by 40 by 41 cells, and was
discretized with Ax = Ay = Az = 3.750 mm. The center of the mesh was excited with a

z-directed point source with the following time variation:

_Texp(2)d (L) (:z)
¥() T dt[ T) P 7 (3.22)
where
T 0.152 (3.23)
L.

where f, was chosen to be 1.75 GHz and Ar was chosen to be 6.25 ps. The z-component
of the electric field was monitored 15 cells from the source in the y-direction for time
step O to time step 10000.
Four different ABCs were used in this stability test, a first-order Mur, and three
DBCs with ¢ equal to 0.00, 0.05, and 0.10, where § is defined in Equation (3.24).
6=0Az (3.249)
The z-component of the electric field for time steps O to 500 is shown in Fig. 3.1.
Clearly, the second-order DBC does a much better job of absorbing the incident pulse
than the first-order Mur. Figure 3.2 shows the electric field as a function of time for time
steps 1500 to 2500. Note that the electric field due to the DBC without the damping term

is growing, while the Mur and the damped DBC remain stable.
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Figure 3.3 demonstrates the stability of the damped DBC, showing the electric
field from time step O to time step 10000. Finally, Fig. 3.4 shows that there is a slight dc
offset when the value of & is not large enough. However, when &= 0.10, there is no
undesirable dc offset and the ABC is stable.

The same test was performed on a nonuniform mesh, and the DBC was found to
be stable without the addition of a damping term. Figure 3.5 shows the electric field 5
cells from the boundary as a function of time for the DBC with 6 equal to zero and 6
equal to 0.10. Although the DBC does not become unstable, there is a slight dc offset
without the damping term, as shown in Fig. 3.6. The addition of the damping term

eliminates the dc offset as in the uniform case.
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Figure 3.3 Electric field response near the boundary for the DBC with a = §, for
6 =0.05 and 6 =0.10. The damping term stabilizes the DBC.
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Figure 3.4 Electric field response near the boundary for the DBC with a = & , for
0 =0.05 and 6 =0.10. The larger damping term eliminates the dc offset.
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Figure 3.5 Electric field ressponse near the boundary for the DBC on a nonuniform grid
witha= §, for 6 =0.00 and 6 =0.10. Both cases are stable.
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Figure 3.6 Electric field response near the boundary for the DBC on a nonuniform grid
witha= 6, for 0 =0.00 and & = 0.10. The damping term eliminates the dc
offset.

3.6 Microstrip Line with Uniform Mesh

In this section, the dispersive boundary condition (DBC) is tested on a microstrip
line. The width of the line is equal to the thickness of the dielectric substrate, which is
2.54 mm, as shown in Fig. 3.7. The dielectric constant of the substrate is 10.2 The DBC
is used to truncate the end walls of the microStrip line, the bottom wall is a perfect electric
conductor, and the side and top walls are truncated with the first-order Mur ABC. The
mesh is discretized with Ax = Ay = Az =0.3715 mm, and the time step Az is 0.6053 ps,
which is 0.99 times the limiting value from the Courant stability criterion. The structure
is excited with a window function with a 3 dB cutoff frequency of 8 GHz. To test the
effectiveness of the DBC, the problem is run with two meshes. The test mesh is 24 by 44
by 270 and the larger reference mesh is 24 by 44 by 500. The voltage is monitored along
the line as a function of time. The solution on the reference line is considered to be exact

since the simulation is stopped before reflections from the far end of the line can reach
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the point where the voltage is monitored and corrupt the signal. The difference between
the reference solution and the test solution will show the effectiveness of the ABC being
tested.

The normalized reflected voltage is plotted as a function of time in Fig. 3.8. The
curve labeled "mur" is the result using a first-order Mur ABC on the test boundary. The
ABC is implemented so that the speed of the wave is determined by the material property
of the medium in a given cell. For example, cells in air are updated with the velocity of
free space, whereas cells in the dielectric are updated with a velocity of ¢/ JE . The peak
of the normalized reflection in the time domain is around 0.025. The curve labeled
"dbc0" is the result of setting 6 = 0, é,] =7.12, and &, =8.5. For "dbcl", 6 =0.1,
g, = 7.12, and g, = 8.5, and for "dbc2", § =0.1, g, = 8.5, and £, = 7.12. All three of
the DBC results appear to be considerable improvements when compared with the Mur

result.

X
I : z
test plane
y . v

side wall

side wall _ .
dielectric

microstrip line

~<4— ground plane

1 h=w=254mm £, =102

Figure 3.7 Geometry of the microstrip line used to test the DBC. The relevant
dimensions are labeled in the figure.
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Figure 3.8 Normalized reflected voltage on the microstrip line as a function of time:
"mur" is first-order Mur; "dbc0" has 8 =0, &,, =7.12, and ¢, = 8.5; "dbcl"
has § = 0.1, g, = 7.12, and €,, = 8.5; "dbc2" has & = 0.1, ¢, =8.5, and
g, =112

Another useful way to ascertain the effectiveness of the ABCs under test is to
define a reflection coefficient due to the ABC. The test voltage is subtracted from the
reference voltage, giving the reflected voltage. The test voltage and reflected voltages are
transformed to tﬁe frequency domain, and the reflection coefficient is then defined as the
ratio of the reflected voltage to the incident voltage. The magnitude of the reflection
coefficient is plotted as a function of frequency in Fig. 3.9, where it can be seen that the
best performing ABC is the DBC with § set to zero. Although this yields the best result,
it can potentially lead to late time instabilities, as was demonstrated in Section 3.5. Since
the § term is applied in the first operator, the choice of &, and €, is significant. Clearly,
it is best to choose the smaller €, value for &, . This results in a reflection coefficient

with magnitude less than 0.01 over the 1 GHz to 16 GHz range.
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Figure 3.9 Magnitude of reflection coefficient as a function of frequency for the
microstrip line. Curves are labeled as in Fig. 3.8.

The error due to the ABCs can also be quantified using error norms. Two
different norms are used in this analysis, an L, norm and an L, norm. The norms are

defined as follows:
1

L = (Z} — IMJ; (3.25)

\4 V

where v, and v, are the reference and test voltages, respectively. Error norms are listed

in Table 3.1. The numerical data show the same trend as the graphical data presented.

Table 3.1 Error for DBC tested on microstrip line

DBC ) £, £, | L1102 | L2 (*10™)
0 0.0 7.12 8.50 0.392367 1.765111
1 0.1 712 8.50 0.457197 2.068264
2 0.1 8.50 7.12 0.778930 3.206607 |
First-order Mur 1.429872 6.966470
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3.7 Microstrip Line with Nonuniform Mesh

The effectiveness of the dispersive boundary condition (DBC) when applied to a
uniform mesh was demonstrated in previous sections. In this section, the DBC is applied
to a microstrip line with a nonuniform mesh. Again, two meshes are used to test the
effectiveness of the DBC. The large reference mesh is 24 by 44 by 500 cells and the test
mesh is 24 by 44 by 270 cells. The geometry is excited and the voltage nonitored in the
same manner as in the uniform case. In order to isolate the effects of the nonuniform
mesh and nonuniform boundary condition, only the last four cells in the z-direction are
nonuniform and the growth rate between neighboring cells is at most 1.20. Three
parameters are varied when testing the performance of the DBC. These parameters are
g, , £, ,and 6, where ¢ is defined in Equation (3.24) and o appears with €, as shown
in Equation (3.18).

Different values and combinations of €, and & were tested, and time domain
results are plotted in Figs. 3.10 - 3.12. In these figures, the difference between the
reference voltage and test voltage is normaiized by the maximum value of the reference
voltage. The values of E, and €, are 7.12 and 8.5, respectively, for cases 0, 1, 3, and 4.
For case 2, g, = 8.5 and g, = 7.12. The 6 values for cases O through 4 are 0.0, 0.10,
0.10, 0.05, and 0.01, respectively. Figure 3.10 shows that case O produces less reflection
than case 1. The result from the first-order Mur ABC is also provided in Fig. 3.10. The
peak in the time domain reflection from the first-order Mur ABC is more than three times
greater than the largest peak from the DBC. Figure 3.11 compares cases 2 through 4 and
clearly shows that case 2 yields poor results. Comparing the results of Fig. 3.10 with the
results in Fig. 3.11 shows that although the reflection from case 2 is large, it is still an
improvement over the first-order Mur result. The time range is narrowed in Fig. 3.12 and
the effect of varying & is shown. The smaller values of 6 produce smaller reflections in

this time range.
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Figure 3.10 Normalized reflected voltage as a function of time for the microstrip line on
a nonuniform grid. The first-order Mur result is labeled "mur," g, = 7.12,
€,, =8.5,"dbc0" has 6 =0, and "dbc1" has § =0.1
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Figure 3.11 Normalized reflected voltage as a function of time for the microstrip line on
a nonuniform grid. "dbc2" has 6§ = 0.1, €,, = 8.5, and ¢,, = 7.12, "dbc3"
has 6 =0.05, €, =7.12, and ¢,, =8.5, "dbc4" has 6 =0.01, €, =7.12, and
g, =85
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Figure 3.12 Normalized reflected voltage as a function of time for the microstrip line on
a nonuniform grid. Curves labeled as in Figs. 3.10 and 3.11.

Frequency domain plots of the magnitude of the reflection coefficient are shown
in Figs. 3.13 and 3.14. Figure 3.13 shows that when €, = 7.12 and g, = 8.5, the DBC
outperforms the first-order Mur by a factor of around 5 or 6 in the frequency range of
4 GHz to 10 GHz. When £, = 8.5, €, = 7.12, and & = 0.10, the DBC is still much more
effective than the first-order Mﬁr, which is not obvious from examining the time domain
results. Figure 3.14 compares the effects of varying 6. Again, the smaller 6 produces
smaller reflections.

As with the uniform mesh microstrip line test, the errors can be quantified with
error norms. The numerical data presented in Table 3.2 show the same trends as the
graphical data. To minimize the reflection from the absorbing boundary, the smaller
value of the two dielectric constants should be used in the first operator, and the damping

term should be small, but remain nonzero in order to prevent late-time instabilites.
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Table 3.2 Error for DBC tested on microstrip line with nonuniform mesh

DBC 6 £, €, | L1107 | L2 (*107)
0 0.00 712 850 | 0452295 | 1448510

1 0.10 712 850 | 0491422 | 1.997053

2 0.10 8.50 712 | 0814429 | 3.536524

3 0.05 712 850 | 0431705 | 1.701391
7 0.01 712 850 | 0453550 | 1.488936
First-order Mur 1.473694 7.053369

3.8 Angle Absorbing Boundary Condition

The form of the dispersive boundary condition (DBC) allows one to choose the
velocity which will optimize the performance of the boundary condition for any given
problem. This is important since it can then be used for both guided wave and radiating
wave problems. When the DBC is used for a radiation problem, it will be referred to as
the angle absorbing boundary condition (AABC).

In order to test the AABC, a simple pqint source radiating in free space was
analyzed. A large mesh with 104 by 104 by 103 cells provided the reference solution and
a smaller mesh with 54 by 54 by 53 cells was used to test the AABC. The majority of the
test mesh is uniform with Ax = Ay = Az = 9.000 mm. The outer four layers in each
direction are nonuniform with a maximum growth rate of 1.2. The time step is chosen to

be 15.625 ps and the center of the mesh is excited with the following z-directed source:
E,(n) = A*(10-15cos(¢) + 6 cos(2¢) - 3cos(39)) (3.26)
where A=1.0/320.0, ¢ =2nf,nAt, and f, =1 GHz. The source, shown in Fig. 3.15, is

nonzero for 64 time steps.
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Figure 3.15 Time signature of the point source excitation used to test the angle absorbing
‘ boundary condition. :

Error analysis is carried out as a function of time and position. The z-component
of the electric field is monitored from time step 80 to time step 160 on the plane two cells
from the y = 0 boundary. This allows the source pulse to pass through the boundary and
shows the effect of the imperfect radiating boundary condition. When the error is shown
as a function of time, the absolute value of the difference between the reference solution
and the test solution is summed at each location on the test plane and normalized by the
maximum value of the sum of the magnitudes of the field values in the reference solution

in the time range of interest. The expression for the error is given in Equation (3.27)

3 G it) = v, (i)
max(zu v, (i, J, t)l)l

where v, is the reference field value, v, is the test field value, i and j are spatial indices,

Error(t) = (3.27)

all ¢

and ¢ is the time index. When the error is presented as a function of position, the sum of

the absolute value of the difference between the reference solution and the test solution
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from time step 80 to time step 160 is normalized by the sum of the absolute value of the
reference solution over that same time interval for a given position, as shown in

Equation (3.28).

v,(p,t)~v,(p:1)

Y v(p.1)

where p is the position index. The position moves along a diagonal from the lower left

%

Error(p (3.28)

corner to the center of the test plane. This corresponds to moving from position 0 to
position 25 as shown in Fig. 3.16. A diagonal line was chosen in order to gauge the
performance of the ABCs being tested as a function of position. This is important
because the performance of ABCs in corners is of interest. Using monitoring locations
along a diagonal gives a wider range of incident angles upon the boundary as opposed to

a line parallel to one of the edges of the mesh.

position 25
! ) =
point source / .
7 A X
/
/ y =
/ position 0
-

Figure 3.16 The geometry used to test the Angle Absorbing Boundary Condition is a
 point source radiating in free space. The fields are monitored on a line in
the y = 2 plane.
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As discussed previously, the order of the implementation of the operators does
make a difference on the nonuniform grid, whether or not the damping térm is present.
The AABC was tested with no damping term using two different angles, one of which
was always zero. For a given angle, there were three possible implementations. One
with v, modified by the angle and v, equal to c, one with v, modified by the angle, and
one with the multipliers determined by averaging the multipliers from the first two cases.
The nonzero angles tested were 15°, 30°, and 45°. The results are compared with the
first-order Mur.

Results for normalized error as a function of time are shown in Figs. 3.17 - 3.20.
Figure 3.17 shows results in which the v, term is modified by the angle as shown on the
plot legend and "mur" refers to the first-order Mur ABC. Figures 3.18 - 3.20 compare the
errors obtained using the three different implementations of the AABC for a given angle.

The best results are achieved when v, is modified by a 45 degree angle.
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Figure 3.17 Normalized error as a function of time. "mur" is first-order Mur, 6, =0, and
6, varies in degrees as shown in the legend.
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Figure 3.18 Normalized error as a function of time. "v1-15" has 6, = 15° and 6, = 0°;
"v2-15"has 6, =0°and 6, = 15°; "a-15" averages the multipliers.
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Figure 3.20 Normalized error as a function of time. "v1-45" has 6, = 45° and 6, = 0%
"v2-45" has 6, =0°and 0, = 45°; "a-45" averages the multipliers.

Monitoring the error as a function of position shows the benefits of using the
AABC. Figures 3.21 - 3.24 show the normalized error as a function of position for
various angles. The optimal results are obtained when an angle of 45 degrees is used in
conjunction with the v, operator. This is particularly apparent near the corner of the
mesh, where the 45 degree angle causes the normalized error to be less than 5%. The
error from the first-order Mur, on the other hand, is on the order of 33% near the corner.
This is a key point because the second-order Mur cannot be implemented directly in the
corners, and when an averaged first-order Mur is used, significant error is intoduced into
the numerical data. As expected, the performance near the corner improves as the angle
varies from zero to 45 degrees. It is interesting to note that averaging the multipliers
gives better results than modifying the v, operator only when the 45 degree angle is used.

This can be seen from Figs. 3.22 - 3.24.

56



0-35 T T T 1 L LI N B lllllllll

;§ 0.25 ;.? é
-§ 0.2 : :
'g 0.15 Lot :
S - = ol A &-.. 1
Z 01 F B frems 2B FaRR—
0.05 55\ E

L T =S, —

0 —I ITQ 1 1 1 1 L 1 1 L 1 J 1 1 1 1 1 I-

0 5 10 15 20 25

Position

Figure 3.21 Normalized error as a function of position. Curves labeled as in Fig. 3.17.
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Figure 3.22 Normalized error as a function of position. Curves labeled as in Fig. 3.18.
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Figure 3.23 Normalized error as a function of position. Curves labeled as in Fig. 3.19.
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The total error can be measured in terms of the L, norm as defined previously.
By summing the error as a function of both position and time, a single numerical value is
obtained. This procedure was followed in order to quantify the total error for the
different implementations and parameter values. The calculated norms are normalized by
the L, norm due to the first-order Mur ABC. Figure 3.25 shows the normalized total
error as a function of angle. The v, operator has a 45° angle and the angle in the v,

operator varies. Clearly it is best to have 8, =45° and 6, = 0° to minimize the total error.
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Figure 3.25 Error normalized to error due to first-order Mur. 6, =45° and 6, varies.

The total error can also be plotted as a function of the damping factor, 6. Two
possible differencing schemes were presented in a previous section. These
implementations of the modified DBC will be referred to as "d1" and "d2," where "d1" is
given by Equation (3.20) and "d2" is given by Equation (3.21). The L, norms of total
error are normalized by the total error due to a first-order Mur ABC and plotted as a

function of 6 in Fig. 3.26. As expected, the "d2" scheme is more sensitive to the value of
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o since it appears in both the numerator and denominator of the multipliers. In the "d1"
scheme, the damping factor is found only in the denominator; hence, the error is less
sensitive to variations of 8. Figure 3.26 shows that error is minimized for "d1" when &
is in the range of 0.15 to 0.20. Error is minimized for "d2" when § is around 0.08. The
performance of the "d1" implementation is only slightly better than for the "d2" scheme.
The addition of the damping term not only stabilizes the AABC, but also
improves the performance. Figures 3.27 and 3.28 show the normalized error as a
function of position for the "d2" implementation, with 6, = 45° and 6, = 0°. Three
values of & are used as shown on the plot legend. Figure 3.27 displays the L, norm error
normalized by the sum of the reference solution, while Fig. 3.28 shows the L, norm error
normalized by the square root of the sum of the squares of the field values in the
reference solution. These curves show the same type of behavior as the curves in Figs.
3.21- .3.24. One interesting feature of these results is that the damping term reduces the

error for positions 6 through 17.
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Figure 3.26 Error normalized to error due to first-order Mur. 8, =45° and 6, =0°. "d1"
uses Equation (3.20) and "d2" uses Equation (3.21).
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Normalized Error

Figure 3.27 L, normalized error as a function of position. 6, = 45° and 6,

Normalized Error
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Figure 3.28 L, normalized error as a function of position. 6, =45° and 6, = 0°, "mur"
is ﬁrst—order Mur; AABC has 5 values as shown in the legend.
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The improvement is also apparent when looking at the error as a function of time.
In Fig. 3.29, the normalized error from & equal to zero is compared with results when &
equals 0.10 for two cases. Incase 1, 6, = 45° and 6, = 0° and in case 2, 6, = 0° and
6, = 45°. Case 1 is labeled as v1-45 on the plot legend, and the "d" indicates the nonzero
6 value. The damping term actually makes the performance worse for case 2, but case 2
is inferior to case 1 in performance. Case 1 is improved with the damping factor, as
desired. Figure 3.30 shows the effect of varying the value of 6 for 6, = 45° and 6, = 0°.
The normalized error is plotted as a function of time; it appears that the best results occur
when § is around 0.20. This agrees with the results in Fig. 3.26.

Error norms were calculated and are presented in Table 3.3. These values agree
with the graphical data, showing that the best performance is obtained when using

6, =45° 6, = 0°, and a nonzero ¢ which can be chosen according to the results in

Fig. 3.26.
0.035 -l L T 1 l/l~ T1rr1 —TrTT Trrvrr LU e e | l LR L ! LB l_
g S0 v1-45d
0.03 ¢ S B I v2-45d
- s —06 — v1-45
5 0025 ottt Al B D VD45
t: C ; i "" .‘.‘\
[I.] C - _,l.' “m/’ Y -
o 0.02 [ 4 \ .
3 S R ~ t\ NI ]
g 0015 ey =54 A i -
‘23 oor - A \//—/\\\ L .“-} A
. :// Ay Jo ~ \“B ~:
/. N— — 3
0.005 IS ek
O hl i1 1 i1 1 1 11 11 | - | I - ] 1111 | S - 11 I—
80 90 100 110 120 130 140 150 160

Time Step

Figure 3.29 Normalized error as a function of time. "v1-45" indicates that 6, = 45° and
6, = 0° and "d" means that  =0.10.
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Table 3.3 Error for AABC for a point source radiating in free space. Error is normalized
- to the error from the first-order Mur ABC.

é 6, (degrees) 0, (degrees) ~ Error
0.1 45 0 0.154983
0.0 45 0 0.205506
0.1 30 0 0.223243
0.0 45,0 average 0.253852
0.0 30 0 0.258989
0.1 15 0 0.268537
0.1 0 30 0.276025
0.1 0 15 0.277707
0.0 0 30 0.282492
0.0 15 0 0.298200
0.0 0 15 0.301365
0.0 0 45 0.311096
0.0 15,0 average 0.324217
0.1 0 45 0.344036
0.0 30,0 average 0.368374

First-order Mur 1.000000




3.9 Conclusions

The study of the Dispersive Boundary Condition was motivated by a discussion of
the shortcomings of the Mur Absorbing Boundary Conditions. The stability issue was
discussed in conjunction with the Modified Dispersive Boundary Condition. It was
demonstrated that the DBC can be used to effectively absorb guided waves and radiating
waves. The DBC was applied to nonuniform meshes and tested with a microstrip line
problem and with a radiating point source problem. Several different implementations of
the DBC on a nonuniform mesh were presented. The parameters of the DBC were varied
and results were presented showing the optimal pérfomance of the DBC in terms of
minimizing reflection error. Several different forms of error analysis Were presented
enabling one to gauge the performance of the DBC in terms of the error as a function of

both time and position.
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CHAPTER 4

CHARACTERIZATION OF MICROSTRIP LINES AND DISCONTINUITIES
USING NONUNIFORM ORTHOGONAL FDTD

4.1 Introduction

Accurate characterization of frequency-dependent transmission lines and
transmission systems is an important topic in the area of millimeter-wave, microwave,
and digital circuit design, in which it is desirable to minimize the size of circuits and
electronic packages. This concern with size reduction often forces lines to bend and to be
close to one another, which introduces frequency-dependent effects. Moreover, as clock
rise times become smaller, the electromagnetic effects of the wave propagating along the
signal lines and throughout the circuit become increasingly important. The FDTD
method is an excellent tool for solving these types of problems because it provides a
full-wave solution for a wide range of frequencies with only'a single simulation. Circuit
simulators, although very fast, on the other hand, use approximations, which are only
valid under somewhat stringent restrictions on frequency range and geometrical features
depending upon the circuit elements. Many of the approximations are quasi-static, and

thus cannot be used for high frequencies. Additionally, in many instances, circuits are

composed of complex transitions which cannot be modeled using circuit simulators. This -

is not a limitation for the FDTD method, which can solvg arbitrarily complicated
geometries including active and passive loads [4.1] limited only by the memory
limitations of the computer used for the FDTD simulation.

In this chapter, the frequency-dependent characteristics of a uniform microstrip
line are calculated, thus demonstrating the applicability of the FDTD method. Use of a
Prony technique with the FDTD method is presented and applied to two-port scattering

parameter calculations. A special update equation for triangular metallization is
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introduced and shown to increase the accuracy of the FDTD method. Finally, the FDTD
method and Prony technique are combined to analyze a grounded coplanar waveguide to

microstrip line transition.

4.2 Uniform Microstrip Line

In this section, the uniform microstrip line of Fig. 4.1 is analyzed using the FDTD
method. The width of line, W, is 150 pm, the height of the substrate, H, is 100 um, and
the dielectric constant, €,, is 13.0. These same line parameters are used in [4.2] and
[4.3]. A uniform cell discretization of Ax = Ay = Az = 12.5 um was used and At was
set to 20.8333 fs. The line was excited with a Blackman-Harris window function with a
3 dB cutoff frequency of around 240 GHz, and the voltage and current were monitored at
several locations along the line. The mesh used to describe the microstrip line was
30 x 108 x 160 cells. The bottom wall was a plane of perfect electric conductor, and the
top and side walls were truncated with the first-order Mur absorbing boundary condition
(ABC). The absorbing boundary conditions used on the walls that terminate the line were
varied. Figure 4.2 shows the magnitude of the reflection coefficient due to the absorbing
boundary as a function of frequency for the first-order Mur ABC and two

implementations of the dispersive boundary condition (DBC).

Figure 4.1 Geometry of the uniform microstrip line. The important parameters are the
line width, W, the substrate height, H, and the dielectric constant, €,.
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Figure 4.2 Magnitude of reflection coefficient of the imperfect absorbing boundary
conditions used to truncate the mesh describing the line in Fig. 4.1. Mur
refers to a first-order Mur. The dispersive boundary conditions have £,=94
and ¢, =11.2. DBCI has 6=0.10 and DBC2 has §=0.01.

Clearly, it is best to use a small value of 6 when using the DBC to minimize the
amount of reflection. The curve labeled "DBC2" in Fig. 4.2 shows reflections of less
than 0.5% over the 20 GHz to 160 GHz frequency range. When compared with the
roughly 3% error of the first-order Mur over the same frequency range, the DBC provides
a significant reduction in the fields reflected from the ABC. Although the magnitude of
the error shown in Fig. 4.2 for the first-order Mur is small, it corrupts the solution enough
to cause oscillations in the effective dielectric constant and impedance calculations [4.4].
These oscillations can be removed by using a technique based on Prony's method [4.5].
This method is presented in the next section, and was used to calculate the reflection
coefficient shown in Fig. 4.2, as well as the effective dielectric constant shown in Fig. 4.3
and the characteristic impedance shown in Fig. 4.4. There is no noticeable difference
between the values calculated using the different ABCs, thus demonstrating the

robustness of the technique. The agreement with the results of Becker is quite good.
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Figure 4.3 Effective dielectric constant for the microstrip line of Fig. 4.1. Absorbing
boundary parameters are as noted in Fig. 4.2. The published results of
Becker [4.3] are provided as a reference.
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Figure 4.4 Characteristic impedance of the microstrip line of Fig. 4.1. Absorbing
boundary parameters are as noted in Fig. 4.2. The published results of
Becker [4.3] are provided as a reference.
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4.3 Prony's Method for Scattering Parameter Extraction

The usual method [4.6] for determining scattering parameters of microstrip
discontinuities requires two FDTD simulations. The first run simulates the uniform
microstrip line in order to determine the incident voltage and/or current. The second run
simulates the line with the discontinuity and finds the total voltage and/or current on the
source side and the transmitted voltage on the other side. The reflected voltage is simply
the difference between the total voltage and the incident voltage. The scattering
parameters are defined in terms of the Fourier transforms of the time signatures of the

incident, reflected, and transmitted voltages as shown in (4.1) and (4.2).

\%
Sy(f)= V”g)) 4.1)
Sn (f ) = "%"_s(('ffsz 4.2)

It is possible to calculate the scattering parameters with only one FDTD
simulation and to eliminate the adverse effects from the imperfect ABCs [4.5]. This is
achieved by using a method based on Prony’s method and transmission line equations.
Consider the general miscrostrip discontinuity problem shown in Fig. 4.5, where the
voltage on the source side of the discontinuity consists of a forward traveling wave and a
backward traveling wave, as does the voltage on the other side of the discontinuity. If the
line runs in the z-direction and the forward traveling source is defined as A, then the

voltage on Side Two can be written as
V,(2) = Sy Ae" + T, 5y Ae e 4.3)
where T, is the reflection due to the imperfection of the absorbing boundary, L, is the

length of the line from reference plane 2 to the boundary, ¥ is the propagation constant,

and S, is one of the unknown scattering parameters. Similarly, the voltage on Side One

can be written as
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Vi(z)=(A+T,

weSiAe M )e ™™ + 5, Ae™" @4)
where L, is the distance from reference plane 1 to the boundary, and S, is the other
unknown scattering parameter. Since the same numerical boundary condition is applied
to all boundaries, and the distances from the reference planes to the boundaries are the
same, I, is the same on side one as on side two. It should be noted that higher-order
products of scattering parameters and reflections due to the boundaries are being
neglected. |

Both Equations (4.3) and (4.4) are of the form V(z)=A*e™ + A”e™", where A"
and A" represent the complex amplitude of the forward and backward traveling waves,
'respectively. These amplitudes, together with the propagation constant, give three
unknowns. Thus, if the voltage is monitored at three locations along the line, the three
unknowns can be determined in the following manner. First, consider the voltage on Side
Two. The voltage is monitored at three z-locations in (4.3) resulting in a system of

equations which is solved using the Prony method to determine ¥, S,/A, and T, . Next,

three voltages on Side One with T

abc

from Side Two are used to determine A and ;.
Finally, the value of A determined on Side One is used to calculate S,,. This method is
twice as efficient as the usual method for calculating scattering parameters. Numerical

results are presented in the next section.

Side One g T5,4 Side Two
- 5;A --+—— 5, A
— A —
S : :
ource, T : - T -
Boundary 1 ! Discontinuity ! Boundary 2
L ! L
- [—
! |
reference plane 1 reference plane 2

Figure 4.5 General microstrip line discontinuity with scattering parameter reference
planes.

71



4.4 Microstrip Line with Right-Angle Bend

A common microstrip line discontinuity is the right-angle bend. The scattering
parameters for this discontinuity will be calculated in this section. The geometry of the
right-angle bend is shown in Fig. 4.6. The line is 4.4 mm.wide and 55 mm in length on
both sides of the bend. The substrate has thickness 1.6 mm and &, = 2.62. These
dimensions result in an impedance of approximately 50 Q near 2.5 GHz. The
discretization of the mesh is Ax =0.533 mm, Ay = Az = 0.55 mm, and the time step is
Ar = 907.1201 fs. The reference planes for calculating the scattering parameters are
located 32 cells (17.6 mm) away from the bend. The computational domain is
140 x 140 x 15 cells, and the first-order Mur ABC is used to truncate the mesh except for
the x = 0 boundary which is a perfect electric conductor. The microstrip line is excited
11 mm from the z = 0 boundary with a Blackman-Harris window function with a 3 dB

cutoff frequency of 10 GHz.

Substrate Thickness: 1.6 mm
Dielectric Constant: 2.62

17.6 mm /

Reference Plane 2

17.6 mm
z
Reference Plane 1
y
/ Excitation Plane
11 mm

Figure 4.6 Geometry of microstrip line with right-angle bend discontinuity.
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The frequency domain results in Figs. 4.7, 4.8, and 4.9 compare the scattering
parameters obtained when analyzing the right-angle bend using the FDTD method with
two runs, using one FDTD run and the Prony technique, and using the circuit simulatér
TouchStone by EEsof [4.7]. Results from Touchstone are limited to 14 GHz, and they do
not account for radiation losses. The scattering parameters determined by Touchstone
satisfy the relationship §> + S2 = 1. The circuit simulator results provide a decent
benchmark, and also show the value of using a full-wave solution. There is some
discrepancy in the phase of the circuit simulator compared with the FDTD results.
However, this is most likely because there is radiation from the line which is not
accounted for by Touchstone. There is no difference between the scattering paramteters
found using one FDTD run and two FDTD runs. Using the Prony technique for
discontinuity problems results in a savings of 50% in simulation time without loss of
accuracy. Moreover, this method can be used for accurate calculation of the dispersive

characteristics of microstrip lines, as demonstrated in Section 4.2.
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Figure 4.7 Magnitude of the scattering parameters of the right-angle bend as a function
of frequency.
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4.5 Microstrip Line with Mitered Right-Angle Bend

One limitation of the orthogonal FDTD method is that since the computational
volume is discretized with cells shaped like bricks, geometries containing features with
curves or angles that are not 90° cannot be modeled precisely. The usual practice is to
use a staircase approximation to the géometry. In terms of radiation and scattering
problems, staircasing usually gives good results since the current distribution in the near-
field need not be computed exactly to predict the far-field accurately. However, when
this technique is applied to guided-wave or circuit problems, staircasing does have a
considerable effect on the results, as will be demonstrated.

A solution to the problem of accurately modeling geometries that are non-
Cartesian is to use the general curvilinear FDTD method. This method, however, is
expensive in terms of the time required for the update equations and the memory
required, but does produce very accurate results. An alternative to the full curvilinear
approach is to write a modified update equation which can be applied locally to the cells
which contain non-Cartesian features. In order to demonstrate this approach, consider the
infinitely thin perfect electric conductor used to model microstrip lines. Modeling lines
that run at an angle with respect to the underlying Cartesian coordiante system, as well as
lines with mitered corners, are examples of problems well-suited to the modified update
equation.

Another common microstrip discontinuity is the mitered right-angle bend, which
is shown in Fig. 4.10. The 45° miter is usually approximated in a staircase fashion as
shown. A better approach is to model the metal with a triangular cell. Starting with

Faraday’s Law in integral form,

—§CE-d7=% [B-d3 @5)

and then writing the discretized version of the equation for H, result in
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n+ . n— . At nf : nf s
Hx 1/2(]”()=Hx l/2(],k)+—'u—A-z'[Ey(_],k)—Ey(_],k——])]

_ A
UAY

Now, assume that the magnetic field H, is positioned at the center of the triangle as

[Ez(j.k)- E;(j - 1k)] (4.6)

shown in Fig. 4.10. Following the integration path as shown in the figure gives the

following update equation.

= [E; (. k)Ay + E; (j - 1,k)Ae] @4.7)

H™2(j,k)= H""(j,k)+

Equation (4.7) was implemented to model infinitely thin triangular pec sections.

Mitered Right-Angle Bend

~

0.55 mm

Figure 4.10 Mitered right-angle bend with detailed FDTD cell.
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The mitered right-angle bend was simulated with the staircase approximation and
the triangle cell approximation. The mesh, excitation, and reference planes are the same
as shown in Fig. 4.6. To show the effect of the miter on the bend, Fig. 4.11 shows the
voltage at reference plane 1. Here the triangle approximation, the staircase
approximation, and the square right-angle bend cases are compared. The miter clearly
reducés the reflection, and there is a slight difference between the -two miter
approximations. Figures 4.12, 4.13, and 4.14 compare the scattering parameters found
via FDTD for the mitered bend with those calculated using TouchStone. While there is
not much difference between the values of S,, computed using the two approximations,
there is a significant difference when comparing the S, values. Although the staircase
approximation is very fine, it results in a value of S|, that is larger than the EEsof result.

On the other hand, the triangular cell approximation gives extremely good agreement

with EEsof up to about 9 GHz.

1.5

3
2 . 5 A - R
Triangle - Miter
2 b f oo Right Angle - No Miter §...

Staircase - Miter

0.5

Voltage (mV)

LJLI A 2 LU I O 0 0 I §

Figure 4.11 Voltage at reference plane 1 as a function of time.
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Figure 4.14 Phase of S, for the mitered right-angle bend as a function of frequency.

4.6 Skewed Stripline

The effect of the staircase on the fields propagating along a microstrip line can be
determined by analyzing a stripline that runs at an angle of 45° with respect to the
underlying Cartesian grid. The geometry and approximations are shown in Fig. 4.15,
where W = 2.07 mm, H = 5.08 mm, and the relative dielectric constant is 5. The stripline
structure was excited with a Blackman-Harris window function with a 3 dB cutoff
frequency of 8.65 GHz, and the voltage was monitored at several locations along the line.
An expression for the effective dielectric constant in terms of the Fourier transform of the

voltage at two locations, separated by a distance L on the line, is given in (4.8).

HIAYECR
Ere (w)_[(w)l [V(d+L))] “8)

where c, is the speed of light in free space, and V(d) is the Fourier transform of the

voltage at position d. Since the structure being analyzed is stripline, it is known that the
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Figure 4.15 (a) Cross-section of stripline with W =2.07 mm and H = 5.08 mm. (b) Line
at angle of 45° with respect to the underlying grid. (c) Staircase
approximation to the line. (d) Triangular cell approximation to the line.

value of €,(®w) is a constant, and, in this particular case, the constant is 5.
Equation (4.8) will be used to calculate €, for a straight stripline and for the 45° line
with the staircase and triangular cell approximations. The deviation of ¢ . from the

expected value will gauge the effectiveness of the approximations.
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The voltage as a function of time at two locations 7.7625 mm apart on a straight
stripline is shown in Fig. 4.16 Note that there is virtually no dispersion of the voltage
pulse as it propagates along the line. Figure 4.17 shows the voltage as a function of time
at two locations 10.98 mm apart on the angled stripline of Fig. 4.15. There is a
considerable amount of dispersion in both approximations. Since the voltage values are
similar, it is helpful to examine the difference between the two. The voltage from the
triangular cell approximation is subtracted from the staircase voltage and plotted in
Fig. 4.18. This clearly shows that the voltage travels slower when the staircase
approximation is used. Exactly how much slower the voltage travels can be ascertained
by examining Fig. 4.19 which is a plot of the relative effective dielectric constant as a
function of frequency. The staircase approximation yields an error of about 9%, whereas
the triangular cell approximation gives an error of at most 3%. This is significant, since
doubling the mesh density using the staircase approximation still gives an error of about
5% [4.8]. Using the triangular cell approximation, the accuracy is improved by a factor

of three without increasing the size of the problem or slowing the update equations.
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Figure 4.16 Voltage waveforms as a function of time at two positions along a straight
stripline. The monitoring positions are 7.7625 mm apart.
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Figure 4.17 Voltage waveforms as a function of time at two positions along an angled
stripline. The monitoring positions are 10.98 mm apart.
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Figure 4.18 Difference between the staircase and triangular cell approximations in the
voltage waveforms of Fig. 4.17. The approximations give rise to different
propagation constants.
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Figure 4.19 Effective dielectric constant as a function of frequency. The triangular cell
approximation is three times more accurate than the staircase approximation.

4.7 Straight Stripline

In the previous section, a skewed stripline was analyzed. The effective dielectric
constant was calculated as a function of frequency from the time domain voltage. In
order to limit the source of error to the staircase or triangular cell approximations, the
simulations were stopped before reflections from the ABCs could contaminate the time
domain data. In this section, the straight stripline is again considered. However, in this
section, the reflections from the ABCs terminating the computational domain will have
an effect on the calculation of the effective dielectric constant. Two different ABCs were
used on the end walls of the stripline, the first-order Mur and the DBC. The parameters
for the DBC were chosen as €, = €, = 5.0 and § = 0.01. The magnitude of the

reflection coefficient due to the ABCs is shown in Fig. 4.20. Both ABCs work very well

83



absorbing the TEM wave propagating along the stripline. The reflection is less than
0.02% for the DBC in the 0.5 GHz to 4.5 GHz frequency range.

Figure 4.21 shows the effective dielectric constant as calculated using (4.8). The
reflection from the first-order Mur causes oscillations in the effective dielectric constant
results. The oscillatory behavior is not present in the effective dielectric constant curve
calculated using the voltage found with the DBC. The Mur and DBC results are
compared to a case in which no reflection is present in the time domain data. When no
reflection is present, the time domain voltage signature is four times shorter than that with
the reflection present. This explains the difference in the frequency resolution between
the Mur, DBC, and straight line cases. Figure 4.22 shows the effective dielectric constant
calculated using the Prony technique of Section 4.3. The Prony technique eliminates all
oscillatory behavior from the curves. The results are again compared with those for the

straight line case, which does not have a reflection present in the time domain data.
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Figure 4.20 Magnitude of reflection coefficients of the absorbing boundary conditions
applied to the straight stripline problem. Both the first-order Mur and the

DBC perform extremely well for this case.
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Figure 4.21 Effective dielectric constant for the straight stripline. The effect of the
absorbing boundaries is shown. The "straight line" curve was obtained from
a time signature with no reflection present.
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Figure 4.22 Effective dielectric constant for the straight stripline. The Prony technique
eliminates the effect of the absorbing boundary. The "straight line" curve
was obtained from a time signature with no reflection present.
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4.8 Coplanar Waveguide to Microstrip Line

Designing and constructing practical microwave and millimeter-wave circuits
offen require an accurate characterization of discontinuities that cannot be adequately
modeled using circuit simulators. This is especially true at higher frequencies where a
full-wave solution to Maxwell's equations is needed. In certain circumstances, when two
different types of waveguiding structures are connected, there are simply no models of
these types of transitions in circuit simulators. Some examples of transitions typically not
found in circuit simulators are the transitions of a microstrip line to a grounded coplanar
waveguide, a slotline to a finline waveguide, and a microstrip line to a waveguide. The
analysis of the transition from a coplanar waveguide to a microstrip line is presented in
this section.

Both quasi-static and full-wave solution methods have been used to characterize a
coplanar waveguide [4.9]. A coplanar waveguide is preferred owller a microstrip line for
several reasons [4.10]. Since the electric field is confined to the narrow slot region, a
relatively small amount of the field is subjected to substrate losses as compared with the
microstrip line. Additionally, having the ground and signal lines in the same plane is
desirable when including devices in the circuit. When the ground and signal lines are not
on the same plane, a hole through the substrate is required to reach electric ground; this
situation is impractical. Moreover, coupling effects between adjacent lines are very weak
since a ground plane separates.them. When an additional ground plane is present, as is
the case with a grounded coplanar waveguide, the gap width should be small compared to
the substrate thickness in order to minimize the effect of the microstrip mode.

The top view of the transition from a grounded coplanar waveguide to a
miérostrip line is shown in Fig. 4.23. The thickness of the dielectric separating the
ground planes is 254 pm and the dielectric constant is 2.2. The thickness of the top
ground plane and microstrips is 16.9333 um. The width of the conducting strip of the

coplanar waveguide, W1, is 442 pum, and the width of the slot, S1, is 54.5 pm. The
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transition from the coplanar waveguide to the microstrip line is 1.1 mm long, and the
taper angle of the top ground plane is 45°. The distance from the top ground plane to the
microstrip line, S2, is 930 pm, the taper angle of the center conductor is 11.5°, and the
width of the microstrip line is 889 um.

The mesh used to describe this problem is very dense because of the finite
thickness of the conducting strips and the need to accurately model the slot in the
coplanar waveguide. The mesh was discretized with Ax = 50 pm, Ay = 8.5 pm, and
Az =16.933 pm. A nonuniform mesh was used in the y-direction in order to have at
least 3*W2 of space between the microstrip line and the end of the mesh. The largest Ay
was 17 wm. First-order Mur ABCs were used on the y-walls and the top wall. The
bottom wall was pec, and the z-walls were terminated with DBCs with g, = 1.403,

g, =2.1,and §=0.01.

Figure 4.23 Top view of the grounded coplanar waveguide to microstrip line transition.
W1=442 pm, W2=889 um, S1=54.5 um, and S2=930 pm, and the transition
is 1.1 mm long.
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The mesh had 40 cells in the x-direction, 300 cells in the y-direction, and 152
cells in the z-direction. The discontinuity was 22 cells long in the z-direction and
centered in the mesh. The electric field in the slot of the coplanar waveguide was excited
with a Blackman-Harris window function with a 10% cutoff frequency of 100 GHz. The
voltage in the slot and the current around the center conductor were monitored at several
locations along the coplanar waveguide. The voltage under the center conductor was
monitored in the transition region, and on the microstrip side of the problem, the voltage
and current were monitored at several locations. Time domain plots of the voltage are
shown in Figs. 4.24 - 4.26. The numbers in the plot legends refer to the cell monitoring
location in the z-direction. The voltage plots in these figures show that the voltage
undergoes considerable reflection because of the transition as well as dispersion due to
the air-dielectric interface.

Using the Prony technique to extract forward and backward traveling voltage and
current waves, the impedance of the lines was calculated and is shown in Fig. 4.27. The

coplanar waveguide impedance is a few ohms lower than the desired 50 Q at 77 GHz.
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Figure 4.24 Voltage in the slot of the grounded coplanar waveguide as a function of
time. The voltage is shown at three successive monitoring locations in the

z-direction.
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Figure 4.25 Voltage under the conductor in the transition region as a function of time.
The voltage is shown at four successive monitoring locations in the
z-direction.
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Figure 4.26 Microstrip line voltage as a function of time. The voltage is shown at three
successive monitoring locations in the z-direction.
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Figure 4.27 Magnitude of the impedance of the grounded coplanar waveguide and the
microstrip line as a function of frequency.

Since the impedances on either side of the transition discontinuity are not the

same, normalized scattering parameters must be used. The expression for S, is given in

4.9)

Z,(f) L(f)
A6 @

where I,(f) is the Fourier transform of the time domain current on the microstrip side of

S2I(f)=

the discontinuity, Z,(f) is the impedance of the microstrip line, and the subscript "1"
refers to the grounded coplanar waveguide. Running the simulation again with the
excitation on the microstrip line side of the discontinuity enables the calculation of all
four scattering parameters. The magnitudes of the scattering parameters of the coplanar
waveguide to microstrip line transition are shown in Fig. 4.28. The phase is shown in
Fig. 4.29. It should be noted that S, and S§,, were slightly different, so an average of the

two values was taken, thereby enforcing reciprocity.
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Figure 4.28 Magnitude of the scattering parameters as a function of frequency for the
grounded coplanar waveguide to microstrip line transition.
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Figure 4.29 Phase of the scattering parameters as a function of frequency for the
grounded coplanar waveguide to microstrip line transition.

91



A final interesting quantity to examine is the normalized power loss, which is

given by
Power Loss = 1-5,,[" ~ S, (4.10)

- when the source is on the port-one side of the discontinuity. The normalized power loss
is shown as a function of frequency in Fig. 4.30. The P1 in the legend refers to the source
on the coplanar waveguide side, and the P2 refers to the source on the microstrip line

side.
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Figure 4.30Normalized power loss as a function of frequency for the coplanar
waveguide to microstrip line transition. P1 refers to the source on the
coplanar waveguide side, and P2 refers to the source on the microstrip line
side.

4.9 Conclusions

A variety of microstrip line and stripline structures were characterized in this
chapter using the FDTD method. A technique based on Prony's method and transmission
line equations was introduced, and demonstrated to characterize lines by extracting

reflections from ABCs and to enable one to calculate scattering parameters of a two-port
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system with a single FDTD simulation. Because of the expense of FDTD simulations in
terms of memory and computation time, reducing the number and length of simulations is
a worthwhile goal. A special update equation based on a triangular path of integration
wés introduced and shown to be a significant improvement over the conventional
staircase method for approximating planar structures that do not directly correspond to
the underlying Cartesian grid. Finally, the transition from grounded coplanar waveguide
to microstrip line was investigated. Both the nonuniformity of the mesh and the Prony
technique for scattering parameter extraction were important in this example. The
grounded coplanar waveguide design presented very nearly achieves a match at 77 GHz.
However, there is still significant power loss. While it is believed that a certain amount
of power loss is inevitable due to the geometry of the discontinuity, perhaps the power

loss could be abated through the use of a tuning stub on the coplanar waveguide.
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CHAPTER 5

CHARACTERIZATION OF COUPLED MICROSTRIP LINES AND COUPLED
STRIPLINES USING NONUNIFORM ORTHOGONAL FDTD |

5.1 Introduction

Coupled microstrip lines and coupled striplines are used in the design of
directional couplers, filters, impedance matching networks, baluns, and delay lines [5.1].
Coupled lines are also important in digital circuits where undesired crosstalk can occur
when signal lines are brought into close proximity of each other [5.2]. There has been
extensive work published in the area of coupled line analysis and design. A selected
sample of some of this work is listed in the references, [5.3] - [5.11]. Various numerical
methods have been employed in the study of coupled lines, including the even and odd
mode method, the coupled mode formulation, the Green's function method, the
variational method, Fourier-series expansion method, and the conformal mapping
technique [5.4]. In [5.7] the spectral Galerkin procedure was used. Time domain models
were developed in [5.6] and [5.8] - [5.10] utilizing quasi-TEM matrices. These methods
require the solution of an eigenvector problem. The asymmetric coupled line case is
defined and treated with the quasi-TEM approach in [5.10].

The purpose of this chapter is to use the full-wave solution provided by the FDTD
method to characterize coupled microstrip lines and coupled striplines. First, the
symmetrié problem is considered and an even and odd mode theory is used in addition to
the methods of Chapter 4 to characterize the lines. The methods of Chapter 4 are
extended to handle the asymmetric case. This new method is presénted, followed by
numerical examples analyzing coupled symmetric and asymmetric lines. Where possible,
FDTD results are compared with circuit simulato‘r data. Finally, a multidielectric

asymmetric coupled stripline problem is analyzed.
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5.2 Symmetric Coupled Microstrip Lines

In this section, the symmetric coupled microstrip lines of Fig. 5.1 are analyzed
using FDTD and the Prony technique déscribed in Section 4.3. The lines are parallel and
run in the z-direction. The width of each line is 300 pm and the separation between the
lines is also 300 pm. The substrate below the infinitely thin lines is 250 pm thick and has
a dielectric constant of 4.5.

The general N-line system supports N different modes. For this case, there are
two lines, so there are two modes. Because of the symmetry of the structure, it is
straightforward to determine the field distributions of the two modes, which can be
referred to as the even and odd modes. For the even mode, the lines have the same
voltage, whereas for the odd mode, the lines have voltages which are equal in magnitude
but 180 degrees out of phase [5.1]. One approach for determining the effective dielectric
constant and impedance of each mode is to model the coupled lines twice, once with an
even mode excitation, and once with an odd mode excitation. Using voltage and current
data, the effective dielectric constant and impedance are found as detailed in Chapter 4.
Another approach is to use a symmetry plane between the lines. Again the problem is
solved twice, once using a plane of perfect electric conductor for the odd mode, and once

using a plane of perfect magnetic conductor for the even mode [5.11].

Figure 5.1 Geometry of coupled microstrip lines. For the symmetric case in this
section, S = W1 = W2 =300 um. The substrate thickness, H, is 250 pm.
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The method used in this work requires only one FDTD simulation. The lines are
excited with an arbitrary voltage distribution, which by definition is a linear superposition
of the even and odd mode field distributions [5.1]. For the example presented in this
section, line 1 was excited and line 2 was not excited. Figure 5.2 shows the line current
on line 1 at two positions on the line as a function of time. Position 1 is located 0.25 cm
from the source and position 2 is 1.125 cm from the source. The amplitude of the current
on line 1 decays as energy is coupled into line 2 as the voltage and current travel down
the line. This phenomenon is clearly displayed in Fig. 5.3, which shows the line current
on line 2 as a function of time. In Fig. 5.3 the amplitude of the current increases as the
distance from the source increases.

The even and odd mode currents are given in (5.1) and (5.2). ‘

L,..=(L,+1)/20 (5.1)
Ly=(I,-1,)/2.0 (5.2)
where I, and I, are the currents on line 1 and line 2, respectively. Equations (5.1) and

(5.2) are valid in both the time domain and the frequency domain. The even mode
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Figure 5.2 Line current on line 1 as a function of time. Position 1 and position
2 are 0.875 cm apart.
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current was determined using (5.1), and is plotted as a function of time in Fig. 5.4.
Equation (5.2) was used to calculate the odd mode current, which is shown in Fig. 5.5.

Comparing Fig. 5.4 and Fig. 5.5, it is clear that the odd mode current propagates faster

than the even mode current.
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Figure 5.3 Line current on line 2 as a function of time. Position 1 and position 2 are
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Figure 5.4 Even mode current as a function of time. Position 1 and position 2 are
0.875 cm apart.
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Figure 5.5 Odd mode current as a function of time. Position 1 and position 2 are
0.875 cm apart.

The effective dielectric constant and impedance are found using the procedure in
Section 4.3, which takes into account the presence of reflections in the time domain data
due to the ABCs. The even and odd mode effective dielectric constants are shown in
Fig. 5.6. FDTD results are compared with results from the circuit simulator LINECALC
[5.12]. The agreement for the odd mode is excellent. For the even mode, however, there
is about a 4% difference between the FDTD and LINECALC values at the low frequency
end of the graph. The difference is less than 3% at a frequency of 40 GHz. The
impedance is plotted as a function of frequency in Fig. 5.7. Again, the FDTD results are
compared with the LINECALC results. The agreement between the FDTD values and
the LINECALC values is excellent. The impedance of a single isolated line as calculated
using LINECALC is provided as a reference. At low frequencies, the even mode
impedance is about 12% larger than the single line impedance. At high frequencies, the
even mode impedance is about 15% larger than the single line impedance. The odd mode

impedance is about 14% smaller than the single line impedance.
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Figure 5.6 Effective dielectric constant as a function of frequency for the symmetric
coupled microstrip lines in Fig. 5.1.
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5.3 Prony's Method for Mode Extraction
A new approach for mode extraction of coupled lines is presented in this section.
Neglecting the reflections from the ABCs, the voltage on eith‘er line of a coupled two-line
system can be written in terms of the modal voltages as
V(z)=Ae™™ + Ae? (5.3)
where
¥, =0, +jB, (5.4)
and A, is the complex amplitude of the voltage mode. Similarly, an expression for the
current is given in (5.5)
C(z)=Be " +B,e"* (5.5)
where ¥, is defined in (5.4). There are six unknowns in (5.3) and (5.5), namely A, 4,,
B, B,, y,, and ¥,. Once these unknowns are determined, it is straightforward to
calculate the modal effective dielectric constants and modal impedances.
The unknowns in (5.3) and (5.5) can be determined using Prony's method [5.13].
The following derivation will be based on the expression for the voltage in Equation
(5.3). The voltage is monitored at four or more locations in the z-direction. These
monitoring points should be equally spaced. The four time domain voltage responses are
transformed to the frequency domain and written as V,, V;, V,, and V;. Equation (5.3) is

rewritten as (5.6).

V(z) = Ay + A (5.6)
The u, are then given by
| u—:_¢_1+ (_?1.)2_‘]) (5.7)
T2 T\ 2 2 '
where
VV, -V V.
¢ — 172 0"3 (5.8)
BRA
and
VZ-VV,
¢, =—21—712 (5.9
V-V,

and the two values of u; are determined by the * operator in (5.7).
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When applying this method, it is important that reflections from the ABCs are not
present in the time domain data. Reflections can be avoided by simply making the
problem long in the z-direction and stopping the simulation before reflections from the
ABCs can contaminate the fields at the monitoring locations. This will reduce the
number of points in the time domain which leads to coarser resolution in the frequency
domain. For many applications, this is not a problem, since the frequency domain data

are smooth and do not require fine resolution.

5.4 Coupled Microstrip Lines

The technique presented in the previous section will be demonstrated in this
section to calculate the effective dielectric constant and impedance for the two modes of
the coupled microstrip lines shown in Fig. 5.1. For this case, W1 = W2 = 300 pm, and
S =50 um. Since the lines are close together, it is expected that the coupling effects will
be greater than in the example in Section 5.2.

Line 1 was excited with a Blackman-Harris window function with a 3 dB cutoff
frequency of 78.9 GHz and line 2 was not excited. The voltage and current were
monitored along the coupled lines, transformed to the frequency domain, and used to
calculate effective dielectric constants and impedances. Figure 5.8 shows the two modal
effective dielectric constants and compares them with the even and odd effective
dielectric constants calculated using LINECALC. The agreement between the
LINECALC and FDTD values is excellent for the odd mode. For the even mode, the
difference is only 1.3%. Even and odd mode impedances are shown in Fig. 5.9. The
agreement for the even mode is excellent but the odd mode calculated using FDTD is
considerably lower than the LINECALC impedance. Increasing the mesh density in the
cross-section would improve the FDTD results. As in Fig. 5.7, the impedance of a single
isolated line is shown for comparison with the even and odd mode impedances. As the

lines are moved closer together, the coupling becomes stronger, and there is greater
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deviation of the even and odd mode impedances from the characteristic impedance of the

isolated line.
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Figure 5.8 Effective dielectric constant as a function of frequency for symmetric
coupled microstrip lines with S = 50 um.
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5.5 Asymmetric Coupled Microstrip Lines

Consider the geometry shown in Fig. 5.1. If W1 # W2, the method presented in
Section 5.2 for calculating the modal effective dielectric constants and impedances cannot
be used. However, the fnethod presented in Section 5.3 can be used. Numerical results
will be presented for asymmetric coupled lines with W1 = 300 pm, W2 = 200 um, and
S=50pum. Line 1 was excited and energy coupled into line 2. The voltage and current
were monitored at several equally spaced sampling locations along the lines. Effective
dielectric constants and impedances were then calculated, as described in the previous
section.

Figure 5.10 shows the effective dielectric constant as a function of frequency.
Values from the FDTD simulation are compared to values from LINECALC. Since
LINECALC does not solve the asymmetric case, two sets of LINECALC data are shown.
One set is for symmetric lines with width, W = 300 um, and separation, S = 50 um.
These data are labeled "Even 300" and "Odd 300" in the graph legend in Fig. 5.10. The
"Even 200" and "Odd 200" labels refer to LINECALC results for syrﬁmetric lines with
width, W = 200 im, and separation, S = 50 um. As shown in Fig. 5.10, the values of the
effective dielectric constant for mode 1 from the FDTD simulation are between those
from the LINECALC calculations. This is the expected result. If it is assumed that
FDTD values for mode 2 are slightly larger than they should be, as was the case in
Fig. 5.6 and Fig. 5.8, the FDTD data are consistent with the results from LINECALC.

Modal impedance values are displayed in Figs. 5.11 and 5.12 for line 1 and line 2,
respectively. The FDTD values are very reasonable, with the exception of mode 1 on line
1, which is most likely smaller than it should be. However, the overall results suggest

that the approach presented in Section 5.3 is a good method for characterizing

asymmetric coupled microstrip lines.
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Figure 5.11 Impedance as a function of frequency for asymmetric coupled lines. The
modal impedances calculated on line 1 (W1 = 300 wm) are compared with
circuit simulator results for symmetric coupled microstrip lines with width
300 um. The single line result shows the impedance of an isolated line with
width 300 pm.
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Figure 5.12 Impedance as a function of frequency for asymmetric coupled microstrip
lines. The modal impedances calculated on line 2 are compared with circuit
simulator results for the symmetric case with W = 200 um. The single line
result shows the impedance of an isolated line with width 200 um.

5.6 Asymmetric Coupled Striplines

The previous sections in this chapter dealt with the analysis of coupled microstrip
lines, and FDTD results were compared with results from LINECALC. In this section,
the effective dielectric constant of asymmetric coupled striplines will be determined.
LINECALC results are not available for this structure because of the asymmetry and
variation of the dielectric. The geometry is shown in Fig. 5.13, where W1 = 300 pm,
W2 =200 pm, S =50 um, H1 = H2 =250 pm, and the top and bottom layers of the
dielectric have dielectric constants of 2.2 and 4.5, respectively. In order to extract the
effective dielectric constant for the asymmetric coupled striplines, line 1 is excited with a
Blackman-Harris window function with a 3 dB cutoff frequency of 45.6 GHz and line 2
is left unexcited. Figure 5.14 shows the line current on line 1 as a function of time. The

amplitude of the current decays as energy is coupled into line; 2. This is shown in
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Fig. 5.15, where the amplitude of the line current on line 2 increases as the monitoring

location moves farther away from the source.

Figure 5.13 Geometry of asymmetric coupled striplines. W1 =300 um, W2 = 200 pm,
S =50pum, and H1 = H2 =250 pum.
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Figure 5.14 Line current on line 1 for the asymmetric coupled stripline in Fig. 5.13.
Position 1 and position 2 are 0.750 cm apart.
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Figure 5.15 Line current on line 2 for the asymmetric coupled stripline in Fig. 5.13.
Position 1 and position 2 are 0.750 cm apart.
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Figure 5.16 Effective dielectric constant as a function of frequency for the asymmetric
coupled stripline in Fig. 5.13. The modal effective dielectric constants are
compared with the effective dielectric constants of the isolated stripline
embedded in the mixed dielectric. W1 =300 pm, and W2 = 200 pm.
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The effective dielectric constant is plotted as a function of frequency in Fig. 5.16.
The two modal effective dielectric constants are compared to the effective dielectric
constants for single isolated striplines of widths 300 pm and 200 pm, respectively. Since
LINECALC results are not available, FDTD results for the isolated lines are used to
compare with the modal results. As is the case with microstrip lines, the modal effective
dielectric constants are greater than and less than the effective dielectric constant for the

single line case. This type of behavior suggests that these results are reasonable.

5.7 Conclusions

Coupled microstrip lines and coupled striplines were analyzed in this chapter.
The FDTD method was used in conjunction with techniques based on Prony's method to
calculate modal effective dielectric constants and impedances with a single FDTD
simulation. Moreover, the new approach presented was not dependent upon the
symmetry of the lines. Numerical results for symmetric and asymmetric lines were
presented and compared with results from LINECALC. An asymmetric coupled stripline
problem with mixed dielectrfc substrate was analyzed, and the coupled results were
compared with single line results obtained using FDTD since problems with layered
dielectrics cannot be modeled using LINECALC. The results from the method presented
were shown to be acceptable. The method could be further improved to account for the
modal reflections due to the ABCs. This would require determining the roots of a
fourth-order polynomial rather than the roots of a quadratic. Another possible avenue of
research would be to use the pencil of functions method [5.14] to set up the eigenvector

problem for the general coupled N-line system.
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CHAPTER 6
ANALYSIS OF MICROSTRIP ANTENNAS USING FDTD

6.1 Introduction

The FDTD method has been applied to analyze a variety of radiating microstrip
and wire 'structures [6.1]-[6.10]. The main advantage of the FDTD method over moment
method techniques for complex geometries is that the preprocessing required for FDTD is
virtually negligible when compared to the preprocessing required to derive and
implement the requisite Green's functions for the method of moments. In this chapter, the
near-field to far-field transformation is discussed, followed by the analysis of a
complicated balun-fed folded dipole antenna. Next the benefits of using the nonuniform
orthogonal FDTD method are demonstrated through the analysis of microstrip patch

antennas. The results obtained are compared with experimental measurements.

6.2 Near-field to Far-field Transformation

There are several methods for obtaining far-field patterns from near-field data in
an FDTD simulation [6.11]-[6.13]. The method reported in [6.13] provides frequency
results over a wide band, but requires an exorbitant amount of memory to store entire
time signatures at the observation locations. In this work, the method reported in [6.11]
was implemented. It is a single frequency method that is not expensive in terms of
memory requirements as compared to the method in [6.13]. A brief summary of the
procedure in [6.11] is presented here.

To determine the radiation pattern or far-field data for a general radiator or
scatterer, one typiéally approaches the problem by solving for the currents on the surface
of the radiator. The currents are then transformed to the far field using a Foufier
transform. However, when the radiator is a complex geometry containing multiple layers

of dielectric and metallization in both the vertical and horizontal directions, it is
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extremely difficult to derive an accurate Green's function, which is required in order to
solve for the currents. This is not a difficulty for the FDTD method, which solves for the
fields everywhere within the computational volume. Therefore, Huygens' Equivalence
Principle can be applied in a straightforward manner. The radiator is enclosed by an
equivalent surface as shown in Fig. 6.1. The tangential electric and magnetic fields on
the surface are used to calculate the equivalent electric and magnetic surface currents.

Electric and magnetic potentials are calculated from the currents as shown in Equation

{4’ ___(e'ik.,r )Ij { _jkar'cosgds‘: (6.1)
F 4nr Jg | M

where r’cosé=(x"cos@+y’sing)sinf+z'cos@. Expressions for the far field are

(6.1).

determined using the simple free-space Green's function. The integration is carried out

numerically by a straightforward summation.

Computational Volume

y 2

Surface of Equivalent Currents

=~

i

/

V4
L4
Radiating Source

Figure 6.1 Schematic representation of radiating source surrounded by equivalent
sources.
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The electric field componenents E, and E, are then given by Equations (6.2) and

(6.3)
|, F]
E, =(-jk,n,)| 4 + P (6.2)
., E]
By= (k) 4=t (6.3)

where 1), is the intrinsic impedance of free space. It should be noted that the expressions
in (6.1) - (6.3) are written in the frequency domain. Since FDTD is a time domain
method, the magnitude and phase of the surface currents are determined by assuming that
fields have settled to the steady-state solution. The maximum and minimum values of the
field or current at a given location on the equivalent surface are determined by searching
the data and the slope of the data as time progresses. However, the entire time signature

is not stored. Only three time points are required per field location.

6.3 Balun-Fed Folded Dipole

The objectives of the work presented in this section are to use the FDTD method
to calculate the standing wave ratio as a function of frequency, and to calculate far-field
radiation patterns at several frequencies, for the balun-fed folded dipole designed and
tested by Proudfoot [6.14]. Advantages of the balun-fed folded dipole were reported in
[6.14] and will be summarized here. The balun-fed folded dipole combines the moderate
bandwidth of the folded dipole with the double tuning capabilites of the balun to provide
a significant increase in bandwidth compared to that of conventional microstrip patches.
The high impedance of the folded dipole leads to a narrow microstrip line feed, which is
important from the fabrication standpoint. Low impedances lead to wide lines, which in
certain instances are actually wider than the radiating element. A final advantage of the

balun-fed folded dipole is that its endfire properties and shielding ground plane make it

attractive for use in arrays.
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The balun-fed folded dipole antenna shown in Figs. 6.2 and 6.3 is a fairly
complicated structure. A “tee” shape is etched away from copper forming the conducting
arms of the folded dipole. The length of the folded dipole is 3.048 cm, the width of the
top arm is 0.1016 cm, the width of the bottom arm is 0.3810 cm, and the etched gap
separating the arms is 0.0508 cm. The dipole is excited with a 0.1151 cm wide
microstrip-line balun feed. The copper of the folded dipole extends towards the source, is
three times as wide as the microstrip line, and serves as the ground for the feeding
microstrip line. The etched slot parallel to the feed line has the same width as the feed
line. The dipole and the feeding line are separated by a dielectric with a thickness of
0.16 cm and relative permittivity equal to 4.4. The microstrip line is impedance matched
at the orthogonal ground plane, which has a hole in it. The orthogonal ground plane is
40.64 cm by 40.64 cm, and located at the z = O plane, 2.027 cm from the center of the
folded dipole. These physical dimensions are found in [6.14], and some are from
measurements of an element at the Rome Laboratory, Hanscom Air Force Base. There is
some uncertainty associated with the dimensions determined by measurement because the
measured element was a prototype.

Examining the time signature of the voltage gives a physical picture of the effects
of the discontinuities. Figure 6.4 shows the voltage under the microstrip line at
z=-1.0cm and z = 0.5 cm. The effects of the hole in the orthogonal ground plane and
the antenna are shown in Fig. 6.4(a). There is a peak in the voltage response due to the
hole at time step 400. Later, at approximately time step 850, the reflection caused by the
antenna is seen. Figure 6.4(b) shows that there is a difference between the uniform line
case and the antenna case before the discontinuity of the antenna is encountered because

of the hole in the orthogonal ground plane. This agrees with the results in Fig. 6.4(a).
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orthogonal ground plane

top dipole arm

pec microstrip feed line

feed ground

bottom dipole arm

Figure 6.2 Balun-fed folded dipole antenna. A layer of dielectric material separates the
microstrip line feed from the folded dipole. The folded dipole is an
extension of the ground for the feed. A hole in the orthogonal ground plane
allows the microstrip line to pass through.
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Figure 6.3 Cross-sections of the balun-fed folded dipole antenna. (a) The x-y plane.
(b) The x-z plane.
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The SWR was calculated by first subtracting the time signature of the voltage of
the uniform line from the time signature of the voltage of the balun-fed folded dipole with
an orthogonal ground plane and calling this the reflected voltage. Next, the reflected
voltage and the incident voltage (the voltage of the uniform line) were transformed to the
frequency domain via the fast Fourier transform. The magnitude of the SWR was then

computed with the following formula:

SWR=|1+ Vo 1 Ve 6.4
W) U ©4

The SWR was also computed using the magnitudes of the incident and reflected currents

rather than the magnitudes of the incident and reflected voltages in Equation (6.4).

In Fig. 6.5, the SWR computed using the FDTD method is compared to the
measurements and theory reported in [6.14]. The FDTD voltages and currents were
monitored at z = 0.0 cm. Circles labeled FDTD voltage and FDTD current indicate that
the SWR was computed using either voltage or current. The results from the FDTD
method appear to capture the general trend of the measured response; however, the
agreement is not that good. This is likely due to the fact that several defining features of
the feed and the dipole were approximated.

When applying this method to the balun-fed folded dipole with an orthogonal
ground plane, a key point is that the equivalent surface totally encloses the radiating
element. This presents a problem since the mesh used for calculating radiation patterns
has a discretization of Ax = 0.04 cm, Ay = 0.03 cm, and Az = 0.05 cm. Since the
orthogonal ground plane has physical dimensions of 40.64 cm by 40.64 cm, the mesh
would have to be more than 1,016 cells in the x-direction and more than 1,355 cells in the
y-direction. These numbers are each an order of magnitude too large for computers with
128 MB of RAM. However, by truncating the mesh in the x- and y-directions, so that the
orthogonal ground plane extends to the edge of the mesh in the x- and y-directions, the

ground plane appears to be of infinite extent as far as the mesh is concerned.
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Figure 6.5 Standing-wave ratio of the balun-fed folded dipole. FDTD calculation with
reference plane at z = -0.5 cm.

Although this model does prevent electric fields from propagating around a finite
perfectly conducting plane, it will not lead to correct radiation patterns in the lower half
plane because the equivalent surface that attempts to surround the radiator does not
totally enclose it. Instead, the orthogonal ground plane intersects the equivalent surface
and introduces undesirable effects for angles near grazing. However, it does provide a
useful approximation for the far field in the upper half plane.

Radiation patterns comparing the co-polarized and cross-polarized fields with
measurements [6.14] for single frequency excitations are shown in Figs. 6.6 and 6.7. In
Fig. 6.6, the frequency of excitation was 3.7 GHz; there is good agreement between the
FDTD results and the measurements, although the FDTD cross-polarized field does miss
a null. Figure 6.7 compares the radiation patterns of the measurements at 3.7 GHz and
the FDTD simulation at 3.4 GHz. The agreement between the FDTD results and

measurements is better at this frequency than in Fig. 6.6. Overall, the agreement between
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the measurements and the FDTD results is very good considering that the numerical

model has a much smaller orthogonal ground plane than the structure that was measured.
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Figure 6.6 Radiation patterns at frequency 3.7 GHz. Co-polarized field is labeled e-co.
Cross-polarized field is labeled e-cr. (a) E-plane. (b) H-plane.




45

30

15

(dB)
[«

15

30

45

45

30

15

(dB)
(=

15

30

45

Figure 6.7 Radiation patterns. Measurements are at frequency 3.7 GHz, and FDTD
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6.4 Microstrip-Line Fed Patch Antenna

A microstrip-line fed patch antenna was built and measured. ), and a radiation
pattern are calculated using the FDTD model, and the results are compared with
measurements. The antenna, shown in Fig. 6.8, is center fed and has a finite ground
plane. The presence of the finite ground plane makes this problem well-suited for FDTD,
whereas moment method techniques have difficulty handling the finite ground plane
when calculating the radiation pattern. Measurements of S;, were performed on the

HP8510 network analyzer. TRL standards, shown in Fig. 6.9, were built and used to

calibrate the network analyzer.

Microstrip Patch Antenna

'

L4

Substrate Thickness: 1.584 mm
Dielectric Constant: 2.62

L1 =30.00 mm
L2 =19.73 mm
L3 =36.38 mm
L4 =7.00 mm
W =4.32 mm

Reference Plane

-

Ax = Ay =0.61659 mm
Az =0.528 mm

»

Figure 6.8 Microstrip-line fed patch antenna with finite ground plane.
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The Prony technique was used to calculate S, at the reference plane. The

magnitude and phase of §,; are plotted in Figs. 6.10 and 6.11. The agreement between

Lt

Line

-

LL =79.731 mm

Figure 6.9 TRL standards used to calibrate network analyzer.

the measurements and the FDTD results is excellent:

The far field was calculated as detailed in the previous section. The microstrip
line was excited at the resonance frequency. The radiation pattern in the yz-plane is
shown in Fig. 6.12. Measured values and FDTD results are both normalized to 30 dB at

6 = 0° for plotting purposes. Again, the agreement between the results is excellent. Note

that there is significant power in the z < 0 half-space.
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Figure 6.10 Magnitude of S, for the microstrip patch antenna.
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Figure 6.11 Phase of S, in degrees for the microstrip patch antenna.
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Figure 6.12 Far-field radiation pattern in the yz-plane. |E-phil vs. theta.

6.5 Coaxial-Line Fed Microstrip Patch Antenna

Not only does the nonuniform orthogonal approach result in considerable savings
of memory and accelerate computation times, it also allows for the accurate modeling of
rectangular geometries. In this section, a microstrip-line fed patch antenna is analyzed in
order to demonstrate the reduction in required memory. Next, coax fed patches are
analyzed, demonstrating the flexibility of the nonuniform mesh.

The microstrip-line fed patch antenna investigated in this section is similar to that
shown in Fig. 6.8. The patch is 4 cm by 4 cm and the feed line is 10 cm long and 0.4 cm
wide. The substrate is 0.15875 c¢m thick with a relative dielectric constant of 2.55 and the
ground plane is infinite. This geometry was modeled using a uniform mesh that was 120
cells by 180 cells by 30 cells with Ax = Ay = 0.1 cm and Az = 0.0529166 cm, and the
simulation ran for 8192 time steps. Using the nonuniform feature in the z-direction, it
was possible to model the same space with 15 cells as opposed to 30 cells. Since the

number of unknowns was cut in half, the simulation was run for 16384 time steps in the
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same amount of computation time as the uniform case. Doubling the length of the time
signal gives twice as much resolution in the frequency domain. Figure 6.13 shows the
magnitude of S, computed using the uniform and nonuniform methods. Note that the
nonuniform method shows a deeper null that is missed by the uniform method due to the
shorter time signature. Increased resolution in the frequency domain could be obtained
with the same total computer time by allowing the cells to grow in the x- and y-directions

as well.
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Figure 6.13 Magnitude of S;; of microstrip-line fed patch antenna. Uniform simulation
had 8192 time steps and nonuniform simulation had 16384 time steps.

It is straightforward to model a microstrip line fed patch antenna. To obtain a
50- Q line, a circuit simulator is used to determine the width of the conductor given the
substrate thickness and dielectric constant. The coax fed patch is slightly more involved.
The circular inner and outer conductors are approximated by square conductors. This
approximation is reasonable if the proper impedance can be obtained. Choices for feed
impedances are severely limited using the uniform method. Equation (6.5) gives the ratio

of the widths of the outer and inner conductors for a dielectric filled square coaxial line

with impedance Z, [6.15].
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w  0.9259
d = o ZoE 5937 (6.5)

For the case of a 50-Q line with &, = 3.6, d/w = 5.3383. Clearly, this would be difficult

to realize using a small number of cells and the uniform approach. However, with the
nonuniform method, this ratio can be obtained using five cells in each direction as shown

in Fig. 6.14.

d d

Case 1: d/w =5.3383 Case 2: d/w =5.620

d d
Case 3: d/'w =6.28 Case 4: d/w = 6.625

Figure 6.14 Cross-sections of four different meshes to describe a 50- 2 square coaxial
line. In all four cases, €, = 3.6.

127



Unfortunately, the FDTD modeling of the ratios determined by (6.5) does not lead
to the desired impedance, so the ratio of the widths of the inner and outer conductors was
varied as shown in Fig. 6. 14, and the resulting impedances are shown in Fig. 6.15. These
results were obtained using the Prony technique described previously to extract the

reflection due to the imperfect absorbing boundaries.
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Figure 6.15 Magnitude of impedance of square coaxial line.

A coax fed patch antenna is shown in Fig. 6.16. The dimensions of the patch and
the position of the feed point would require a prohibitively large computational domain
using a uniform mesh. With the nonuniform mesh, the geometry is accurately modeled
with a reasonable number of unknowns. The mesh is 111 cells by 111 cells by 93 cells,

and there is approximately 60 mm between the patch antenna and the absorbing

boundaries.

128



coax feed ground plane ¥

(a)

dielectric patch

ground plane

X i center conductor of coax

(b)

Figure 6.16 Coax fed microstrip patch antenna. The dielectric constant is 3.6. (a) Top
view. (b) Side view.

The microstrip patch antenna was designed for circular polarization, built, and
measured. Tuning stubs were used to enhance the performance of the antenna, but
records of the sizes and locations of the stubs were not kept. Measured results are shown
in Fig. 6.17, where the frequency starts at f; = 1.48 GHz and stops at f, = 1.60 GHz, and
the location of the reference plane is unknown. This antenna was modeled using

nonuniform orthogonal FDTD, and results are shown in Figs. 6.18 - 6.20, where the
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frequency starts at f; = 1.4420 GHz and stops at f, = 1.5461 GHz, and the reference plane
is located at the junction between the coaxial feed and the ground plane. The input
impedance for the antenna is shown in Fig. 6.18. There is a loop near resonance, so the
difference between the lengths of the sides has to be reduced for better performance. A
4.2 mm by 2.7 mm tuning stub was placed on the 50.5 mm side, effectively increasing the
length of the shorter side. The input impedance for the antenna with this tuning stub is
shown in Fig. 6.19. The cusp in the input impedance is not very deep, suggesting that the
tuning stub is too large. The stub was reduced to 2.8 mm by 2.7 mm. The input
impedance for the antenna with the smaller tuning stub is shown in Fig. 6.20. The
difference between the measured and calculated resonant frequencies is less than 1.5%.
Further refinements of the position and size of the tuning stub would further improve the

agreement between the measured results and the FDTD results.

S11 Measured

Figure 6.17 Measured input impedance of coax fed patch antenna. Frequencies f; and f,
are 1.48 GHz and 1.60 GHz, respectively.
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S1; Patch

Figure 6.18 Input impedance of coax fed patch antenna. Frequencies f; and f, are
1.442 GHz and 1.5461 GHz, respectively.

S11 Tuning Stub 1

Figure 6.19 Input impedance of coax fed patch antenna with tuning stub. Frequencies f;
and f, are 1.442 GHz and 1.5461 GHz, respectively.




S11 Tuning Stub 2

Figure 6.20 Input impedance of coax fed patch antenha with tuning stub. Frequencies f;
and f, are 1.442 GHz and 1.5461 GHz, respectively.

6.6 Conclusions

The FDTD method was applied to analyze a very complicated geometry, namely a
printed circuit folded dipole with an integrated balun. The numerical results from the
FDTD model were compared with theoretical and measured results. The results for the
radiation pattern were in excellent agreement with the measured data. However, the
SWR calculations were much more sensitive to the modeling approximations. Therefore,
a centér fed microstrip line fed patch antenna was constructed, measured, and modeled
with FDTD. The FDTD results were shown to be in excellent agreement with the
experimental measurements. The nonuniform orthogonal method was used in order to
accurately model coaxially fed microstrip patch antennas. The nonuniformity allows

much greater accuracy in describing the geometry as compared with the uniform method,
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which requires that patch dimensions and features be integral multiples of the cell

discretization. Such a restriction is entirely impractical. Although the nonuniform grid

gives enhanced modeling capabilites, there is room for improvement in the modeling and

calculation of input impedance of coaxially fed patch antennas using the FDTD method,

specifically for design purposes.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

The nonuniform orthogonal FDTD method was developed and demonstrated on a
wide variety of problems. The nonuniform orthogonal FDTD method is superior to the
conventional FDTD method in several aspects. The nonuniform discretization provides
great flexibility in modeling geometries, whereas dimensions must be integral multiples
of a fixed cell discretization in the conventional method. Moreover, the ability of the
mesh to be dense in areas of interest and then gradually expand to a relatively coarse
mesh makes it possible to efficiently analyze two classes of problems. These classes of
problems are (a) geometries with fine features, and (b) large geometries. Futhermore, the
orthogonality of the method preserves the speed of the conventional method.

Chapter 2 presented the nonuniform orthogonal FDTD method. Update equations
were derived from the general curvilinear FDTD update equations and shown to be of the
same form as the conventional update equations, thus demonstrating the preservation of
the speed of the update equations. Memory requirements were shown to be only
marginally larger than for the conventional method. This is significant when compared
with the curvilinear method, which is expensive in terms of both memory requirements
and loss of speed. The error associated with the nonuniform grid was discussed. A
numerical example demonstrated that gradual growth rates in the mesh discretization lead
to errors that can be maintained at acceptably low levels. A more rigorous approach to
the analysis of the nonuniform grid error is suggested for future work.

A dipole radiating in the presence of lossy layered media was analyzed, and
shown to give excellent results when compared with analytic and moment method results.
The nonuniform orthogonal FDTD method resulted in significant savings of memory and

computation time when compared with the conventional FDTD method. The nonuniform

orthogonal FDTD method was also applied to the finline waveguide structure. The
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FDTD results obtained were shown to be in good agreement with results from the regular
solution of the singular integral equation.

Chapter 3 provided a numerical analysis of the dispersive boundary condition
(DBC) applied to nonuniform grids. Stability and dc offsets were discussed, and the
DBC was tested with radiating and guided wave problems. Error analysis was carried out
in the time domain, the frequency domain, and spatially. Analysis of Liao's ABC applied
to nonuniform grids is a suggested direction for further study.

Chapter 4 presented a variety of methods for calculating the frequency-dependent
characteristics of microstrip lines, striplines, and discontinuities. A Prony technique with
the FDTD method was presented and applied to two-port scattering parameter
calculations. A local mesh refinement technique was introduced for triangular
metallization and demonstrated to increase the accuracy of the FDTD method. The
FDTD method and Prony technique were combined to analyze the complicated transition
from a grounded coplanar waveguide to a microstrip line. Further analysis of the
microstrip line to the grounded coplanar waveguide transition is suggested. Microstrip or
coplanar waveguide stubs should be able to provide a good match at frequencies of
interest.

The methods of Chapter 4 were extended in Chapter 5 to handle a broader class of
problems. The new method was presented, followed by numerical examples analyzing
coupled symmetric and asymmetric lines. A multidielectric asymmetric coupled stripline
problem was also analyzed. A possible avenue for research involves applying the general
pencil-of-function method in a manner similar to that presented in Chapter 5. This
method should permit the extraction of general modal information for arbitrary coupled
line structures.

Chapter 6 discussed the application of the FDTD method to analyze microstrip
antennas. A near-field to far-field transformation was discussed, followed by the analysis

of a complicated balun-fed folded dipole antenna. The benefits of using the nonuniform
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orthogonal FDTD method were demonstrated through the analysis of microstrip patch
antennas. The results obtained were compared with experimental measurements.
Excellent results were obtained for the microstrip line fed patch antenna. However,

improvements can be made to calculate the input impedance more accurately when

modeling coaxially fed microstrip patch antennas.
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